Skip to main content

Advertisement

Log in

Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Adipose tissue becomes hypoxic in obesity, and cell culture studies have demonstrated that hypoxia leads to major changes in adipocyte function. Studies on the response of adipocytes to low O2 tension have employed marked hypoxia (1% O2). Here, we have examined the effects of modest hypoxia, utilising differing concentrations of O2 (1–21%), on adipokine production and glucose uptake by human adipocytes. Incubation with 10% O2 (24 h) increased expression of the leptin, vascular endothelial growth factor (VEGF) and Angptl4 genes, while leptin expression was elevated even at 15% O2 (compared to ‘normoxia’—21% O2). Overall, there was a concentration-dependent increase in the expression of these genes as O2 fell, with the highest mRNA level evident at 1% O2. Parallel changes were observed in the secretion of leptin, VEGF and IL-6 into the medium, an increased release being evident at 10% O2 (15% O2 for leptin). Adiponectin gene expression was reduced at 15% O2 and below, while adiponectin release was significantly reduced at 5% O2. Both 2-deoxy-d-glucose uptake and lactate release showed progressive increases as O2 concentration fell, being significantly raised at 10% and 5% O2, respectively. The alterations in substrate transport were accompanied by parallel changes in transporter gene expression, GLUT1 and MCT1 mRNA level increasing from 15% and 10% O2, respectively. These results indicate that marked responses to reduced O2 concentration are exhibited by human adipocytes at O2 levels well above those associated with hypoxia and employed in cell culture studies. Adipocytes are sensitive to small changes in O2 tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  PubMed  CAS  Google Scholar 

  2. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953

    Article  PubMed  CAS  Google Scholar 

  3. Brahimi-Horn MC, Pouyssegur J (2007) Oxygen, a source of life and stress. FEBS Lett 581:3582–3591

    Article  PubMed  CAS  Google Scholar 

  4. Chen B, Lam KSL, Wang Y, Wu D, Lam MC, Shen J, Wong L, Hoo RLC, Zhang J, Xu A (2006) Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem Biophys Res Commun 341:549–556

    Article  PubMed  CAS  Google Scholar 

  5. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF (1996) Serum immunoreactive leptin concentrations in normal-weight and obese humans. New Engl J Med 334:292–295

    Article  PubMed  CAS  Google Scholar 

  6. Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, Bouloumié A (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53:1285–1292

    Article  PubMed  CAS  Google Scholar 

  7. Festa A, D’Agostino R Jr, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP, Haffner SM (2001) The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obesity 25:1407–1415

    Article  CAS  Google Scholar 

  8. Frühbeck G, Salvador J (2004) Role of adipocytokines in metabolism and disease. Nutr Res 24:803–826

    Article  Google Scholar 

  9. Hausman GJ (1985) The comparative anatomy of adipose tissue. In: Cryer A, Van RLR (eds) New perspectives in adipose tissue: structure, function and development. Butterworths, London, pp 1–21

    Google Scholar 

  10. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56:901–911

    Article  PubMed  CAS  Google Scholar 

  11. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  PubMed  CAS  Google Scholar 

  12. Karpe F, Fielding BA, Ilic V, Macdonald IA, Summers LKM, Frayn KN (2002) Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 51:2467–2473

    Article  PubMed  CAS  Google Scholar 

  13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔct method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  14. Lolmède K, de Saint D, Front V, Galitzky J, Lafontan M, Bouloumié A (2003) Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obesity 27:1187–1195

    Article  Google Scholar 

  15. Ostlund RE, Yang JW, Klein S, Gingerich R (1996) Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab 81:3909–3913

    Article  PubMed  CAS  Google Scholar 

  16. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476

    PubMed  CAS  Google Scholar 

  17. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappa B signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    PubMed  CAS  Google Scholar 

  18. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58:718–725

    Article  PubMed  CAS  Google Scholar 

  19. Patel SA, Simon MC (2008) Biology of hypoxia-inducible factor-2α in development and disease. Cell Death Differ 15:628–634

    Article  PubMed  CAS  Google Scholar 

  20. Pérez de Heredia F, Wood IS, Trayhurn P (2010) Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflügers Arch Eur J Physiol 459:509–518

    Article  Google Scholar 

  21. Rajala MW, Scherer PE (2003) The adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144:3765–3773

    Article  PubMed  CAS  Google Scholar 

  22. Rausch ME, Weisberg SP, Vardhana P, Tortorielllo DV (2008) Obesity in C57BL/6J mice is characterised by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obesity 32:451–463

    Article  CAS  Google Scholar 

  23. Regazzetti C, Peraldi P, Gremeaux T, Najem-Lendom R, Ben-Sahra I, Cormont M, Bost F, Le Marchand-Brustel Y, Tanti J-F, Giorgetti-Peraldi S (2009) Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58:95–103

    Article  PubMed  CAS  Google Scholar 

  24. Rocha S (2007) Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 32:389–397

    Article  PubMed  CAS  Google Scholar 

  25. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    Article  PubMed  CAS  Google Scholar 

  26. Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13:167–171

    Article  PubMed  CAS  Google Scholar 

  27. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  28. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka T, Wiesener M, Bernhardt W, Eckardt KU, Warnecke C (2009) The human HIF (hypoxia-inducible factor)-3α gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochem J 424:143–151

    Article  PubMed  CAS  Google Scholar 

  30. Trayhurn P (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184:285–293

    Article  PubMed  CAS  Google Scholar 

  31. Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60:329–339

    Article  PubMed  CAS  Google Scholar 

  32. Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235

    Article  PubMed  CAS  Google Scholar 

  33. Trayhurn P, Wood IS (2004) Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92:347–355

    Article  PubMed  CAS  Google Scholar 

  34. Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflügers Archiv Eur J Physiol 455:479–492

    Article  CAS  Google Scholar 

  35. Wang B, Wood IS, Trayhurn P (2008) Hypoxia induces leptin gene expression and secretion in human preadipocytes: differential effects of hypoxia on adipokine expression by preadipocytes. J Endocrinol 198:127–134

    Article  PubMed  CAS  Google Scholar 

  36. Wang B, Wood IS, Trayhurn P (2008) PCR arrays identify metallothionein-3 as a highly hypoxia-inducible gene in human adipocytes. Biochem Biophys Res Commun 368:88–93

    Article  PubMed  CAS  Google Scholar 

  37. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  38. Wood IS, Wang B, Lorente-Cebrián S, Trayhurn P (2007) Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-d-glucose uptake in human adipocytes. Biochem Biophys Res Commun 361:468–473

    Article  PubMed  Google Scholar 

  39. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  40. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946

    Article  PubMed  CAS  Google Scholar 

  41. Ye J (2008) Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obesity 33:54–66

    Article  Google Scholar 

  42. Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293:E1118–E1128

    Article  PubMed  CAS  Google Scholar 

  43. Yin J, Gao Z, He Q, Zhou D, Guo Z, Ye J (2009) Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab 296:E333–E342

    Article  PubMed  CAS  Google Scholar 

  44. Yudkin JS (2003) Adipose tissue, insulin action and vascular disease: inflammatory signals. Int J Obesity 27(Suppl 3):S25–S28

    Article  CAS  Google Scholar 

  45. Zhang X, Lam KSL, Ye H, Chung SK, Zhou M, Wang Y, Xu A (2010) Adipose tissue-specific inhibition of hypoxia-inducible factor 1α induces obesity and glucose intolerance by impeding energy expenditure in mice. J Biol Chem 285:32869–32877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Biotechnology and Biological Sciences Research Council (UK) for grant support. PT is a member of COST BM0602.

Disclosures

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Trayhurn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, I.S., Stezhka, T. & Trayhurn, P. Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflugers Arch - Eur J Physiol 462, 469–477 (2011). https://doi.org/10.1007/s00424-011-0985-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0985-7

Keywords

Navigation