Skip to main content

Advertisement

Log in

Impaired glycosylation blocks DPP10 cell surface expression and alters the electrophysiology of I to channel complex

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

DPP10 is a transmembrane glycosylated protein belonging to the family of dipeptidyl aminopeptidase-like proteins (DPPLs). DPPLs are auxiliary subunits involved in the regulation of voltage-gated Kv4 channels, key determinants of cardiac and neuronal excitability. Although it is known that DPPLs are needed to generate native-like currents in heterologous expression systems, the molecular basis of this involvement are still poorly defined. In this study, we investigated the functional relevance of DPP10 glycosylation in modulating Kv4.3 channel activities. Using transfected Chinese hamster ovary (CHO) cells to reconstitute Kv4 complex, we show that the pharmacological inhibition of DPP10 glycosylation by tunicamycin and neuraminidase affects transient outward potassium current (I to) kinetics. Tunicamycin completely blocked DPP10 glycosylation and reduced DPP10 cell surface expression. The accelerating effects of DPP10 on Kv4.3 current kinetics, i.e. on inactivation and recovery from inactivation, were abolished. Neuraminidase produced different effects on current kinetics than tunicamycin, i.e., shifted the voltage dependence to more negative potentials. The effects of tunicamycin on the native I to currents of human atrial myocytes expressing DPP10 were similar to those of the KV4.3/KChIP2/DPP10 complex in CHO cells. Our results suggest that N-linked glycosylation of DPP10 plays an important role in modulating Kv4 channel activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen M, Heinzmann A, Noguchi E, Abecasis G, Broxholme J, Ponting CP, Bhattacharyya S, Tinsley J, Zhang Y, Holt R, Jones EY, Lench N, Carey A, Jones H, Dickens NJ, Dimon C, Nicholls R, Baker C, Xue L, Townsend E, Kabesch M, Weiland SK, Carr D, von Mutius E, Adcock IM, Barnes PJ, Lathrop GM, Edwards M, Moffatt MF, Cookson WO (2003) Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet 35:258–263

    Article  CAS  PubMed  Google Scholar 

  2. An W, Bowlby M, Betty M, Cao J, Ling H, Mendoza G, Hinson J, Mattsson K, Strassle B, Trimmer J, Rhodes K (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    Article  CAS  PubMed  Google Scholar 

  3. Chang XB, Mengos A, Hou YX, Cui L, Jensen TJ, Aleksandrov A, Riordan JR, Gentzsch M (2008) Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator. J Cell Sci 121:2814–2823

    Article  CAS  PubMed  Google Scholar 

  4. Chen T, Ajami K, McCaughan GW, Gai WP, Gorrell MD, Abbott CA (2006) Molecular characterization of a novel dipeptidyl peptidase like 2-short form (DPL2-s) that is highly expressed in the brain and lacks dipeptidyl peptidase activity. Biochim Biophys Acta 1764:33–43

    CAS  PubMed  Google Scholar 

  5. Clark BD, Kwon E, Maffie J, Jeong HY, Nadal M, Strop P, Rudy B (2008) DPP6 localization in brain supports function as a Kv4 channel associated protein. Front Mol Neurosci 1:8

    Article  PubMed  Google Scholar 

  6. Deng J, Chen M, Yang Q, Yu H, Zhang T, Yu Q, Huang D (2009) Molecular mechanism of the changes in ventricular electrical remodeling caused by mechano-electrical feedback in rabbits with congestive heart failure. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 26:50–54

    CAS  PubMed  Google Scholar 

  7. Deutsch C (2003) The birth of a channel. Neuron 40:265–276

    Article  CAS  PubMed  Google Scholar 

  8. Dougherty K, Covarrubias M (2006) A dipeptidyl aminopeptidase-like protein remodels gating charge dynamics in Kv4.2 channels. J Gen Physiol 128:745–753

    Article  CAS  PubMed  Google Scholar 

  9. El-Haou S, Balse E, Neyroud N, Dilanian G, Gavillet B, Abriel H, Coulombe A, Jeromin A, Hatem SN (2009) Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 104:758–769

    Article  CAS  PubMed  Google Scholar 

  10. Gong Q, Anderson C, January C, Zhou Z (2002) Role of glycosylation in cell surface expression and stability of HERG potassium channels. Am J Physiol Heart Circ Physiol 283:H77–H84

    CAS  PubMed  Google Scholar 

  11. Heusser K, Schwappach B (2005) Trafficking of potassium channels. Curr Opin Neurobiol 15:364–369

    Article  CAS  PubMed  Google Scholar 

  12. Jerng H, Kunjilwar K, Pfaffinger P (2005) Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 568:767–788

    Article  CAS  PubMed  Google Scholar 

  13. Jerng H, Lauver A, Pfaffinger P (2007) DPP10 splice variants are localized in distinct neuronal populations and act to differentially regulate the inactivation properties of Kv4-based ion channels. Mol Cell Neurosci 35:604–624

    Article  CAS  PubMed  Google Scholar 

  14. Jerng H, Qian Y, Pfaffinger P (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys J 87:2380–2396

    Article  CAS  PubMed  Google Scholar 

  15. Jerng HH, Dougherty K, Covarrubias M, Pfaffinger PJ (2009) A novel N-terminal motif of dipeptidyl peptidase-like proteins produces rapid inactivation of K(V)4.2 channels by a pore-blocking mechanism. Channels (Austin) 3:69–83

    Google Scholar 

  16. Jerng HH, Shahidullah M, Covarrubias M (1999) Inactivation gating of Kv4 potassium channels: molecular interactions involving the inner vestibule of the pore. J Gen Physiol 113:641–660

    Article  CAS  PubMed  Google Scholar 

  17. Kaab S, Dixon J, Duc J, Ashen D, Nabauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393

    CAS  PubMed  Google Scholar 

  18. Kim J, Nadal MS, Clemens AM, Baron M, Jung SC, Misumi Y, Rudy B, Hoffman DA (2008) Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons. J Neurophysiol 100:1835–1847

    Article  CAS  PubMed  Google Scholar 

  19. Koyama T, Ono K, Watanabe H, Ohba T, Murakami M, Iino K, Ito H (2009) Molecular and electrical remodeling of L- and T-type Ca(2+) channels in rat right atrium with monocrotaline-induced pulmonary hypertension. Circ J 73:256–263

    Article  CAS  PubMed  Google Scholar 

  20. Li HL, Qu YJ, Lu YC, Bondarenko VE, Wang S, Skerrett IM, Morales MJ (2006) DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4. Am J Physiol Cell Physiol 291:C966–C976

    Article  CAS  PubMed  Google Scholar 

  21. Nadal M, Ozaita A, Amarillo Y, Vega-Saenz de Miera E, Ma Y, Mo W, Goldberg E, Misumi Y, Ikehara Y, Neubert T, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37:449–461

    Article  CAS  PubMed  Google Scholar 

  22. Nakajima T, Hayashi K, Viswanathan PC, Kim MY, Anghelescu M, Barksdale KA, Shuai W, Balser JR, Kupershmidt S (2007) HERG is protected from pharmacological block by alpha-1, 2-glucosyltransferase function. J Biol Chem 282:5506–5513

    Article  CAS  PubMed  Google Scholar 

  23. Petrecca K, Atanasiu R, Akhavan A, Shrier A (1999) N-linked glycosylation sites determine HERG channel surface membrane expression. J Physiol 515(Pt 1):41–48

    Article  CAS  PubMed  Google Scholar 

  24. Qi SY, Riviere PJ, Trojnar J, Junien JL, Akinsanya KO (2003) Cloning and characterization of dipeptidyl peptidase 10, a new member of an emerging subgroup of serine proteases. Biochem J 373:179–189

    Article  CAS  PubMed  Google Scholar 

  25. Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E (2005) Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol 565:751–756

    Article  CAS  PubMed  Google Scholar 

  26. Ren X, Hayashi Y, Yoshimura N, Takimoto K (2005) Transmembrane interaction mediates complex formation between peptidase homologues and Kv4 channels. Mol Cell Neurosci 29:320–332

    Article  CAS  PubMed  Google Scholar 

  27. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  28. Schwalbe RA, Wang Z, Bianchi L, Brown AM (1996) Novel sites of N-glycosylation in ROMK1 reveal the putative pore-forming segment H5 as extracellular. J Biol Chem 271:24201–24206

    Article  CAS  PubMed  Google Scholar 

  29. Schwalbe RA, Wang Z, Wible BA, Brown AM (1995) Potassium channel structure and function as reported by a single glycosylation sequon. J Biol Chem 270:15336–15340

    Article  CAS  PubMed  Google Scholar 

  30. Takimoto K, Hayashi Y, Ren X, Yoshimura N (2006) Species and tissue differences in the expression of DPPY splicing variants. Biochem Biophys Res Commun 348:1094–1100

    Article  CAS  PubMed  Google Scholar 

  31. Takimoto K, Yang EK, Conforti L (2002) Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels. J Biol Chem 277:26904–26911

    Article  CAS  PubMed  Google Scholar 

  32. Thornhill W, Wu M, Jiang X, Wu X, Morgan P, Margiotta J (1996) Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function. J Biol Chem 271:19093–19098

    Article  CAS  PubMed  Google Scholar 

  33. Ufret-Vincenty CA, Baro DJ, Santana LF (2001) Differential contribution of sialic acid to the function of repolarizing K(+) currents in ventricular myocytes. Am J Physiol Cell Physiol 281:C464–C474

    CAS  PubMed  Google Scholar 

  34. van der Heyden MA, Wijnhoven TJ, Opthof T (2006) Molecular aspects of adrenergic modulation of the transient outward current. Cardiovasc Res 71:430–442

    Article  PubMed  Google Scholar 

  35. Wada K, Yokotani N, Hunter C, Doi K, Wenthold R, Shimasaki S (1992) Differential expression of two distinct forms of mRNA encoding members of a dipeptidyl aminopeptidase family. Proc Natl Acad Sci U S A 89:197–201

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe I, Zhu J, Recio-Pinto E, Thornhill WB (2004) Glycosylation affects the protein stability and cell surface expression of Kv1.4 but Not Kv1.1 potassium channels. A pore region determinant dictates the effect of glycosylation on trafficking. J Biol Chem 279:8879–8885

    Article  CAS  PubMed  Google Scholar 

  37. Watanabe I, Zhu J, Sutachan J, Gottschalk A, Recio-Pinto E, Thornhill W (2007) The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials. Brain Res 1144:1–18

    Article  CAS  PubMed  Google Scholar 

  38. Wettwer E, Amos GJ, Posival H, Ravens U (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75:473–482

    CAS  PubMed  Google Scholar 

  39. Zagha E, Ozaita A, Chang S, Nadal M, Lin U, Saganich M, McCormack T, Akinsanya K, Qi S, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280:18853–18861

    Article  CAS  PubMed  Google Scholar 

  40. Zhu J, Gomez B, Watanabe I, Thornhill WB (2007) Kv1 potassium channel C-terminus constant HRETE region: arginine substitution affects surface protein level and conductance level of subfamily members differentially. Mol Membr Biol 24:194–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported with grants from the EU (MERG-CT-2005-031150) to D.S., the MedDrive-Fellowship program to S.R., and Regione Piemonte (Ricerca Sanitaria Finalizzata) to D.C and D.S. A Regione Piemonte initiative to enforce the Research-Innovation System (L.R. n. 4/2006) supports D.C. and S.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Cotella.

Additional information

D. Cotella and S. Radicke contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotella, D., Radicke, S., Bortoluzzi, A. et al. Impaired glycosylation blocks DPP10 cell surface expression and alters the electrophysiology of I to channel complex. Pflugers Arch - Eur J Physiol 460, 87–97 (2010). https://doi.org/10.1007/s00424-010-0824-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0824-2

Keywords

Navigation