Skip to main content

Advertisement

Log in

The role of SERCA2a/PLN complex, Ca2+ homeostasis, and anti-apoptotic proteins in determining cell fate

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Intracellular calcium is a major coordinator of numerous aspects of cellular physiology, including muscle contractility and cell survival. In cardiac muscle, aberrant Ca2+ cycling has been implicated in a range of pathological conditions including cardiomyopathies and heart failure. The sarco(endo)plasmic reticulum Ca2+ transport adenosine triphosphatase (SERCA2a) and its regulator phospholamban (PLN) have a central role in modulating Ca2+ homeostasis and, therefore, cardiac function. Herein, we discuss the mechanisms through which SERCA2a and PLN control cardiomyocyte function in health and disease. Emphasis is placed on our newly identified PLN-binding partner HS-1-associated protein X-1 (HAX-1), which has an anti-apoptotic function and presents with numerous similarities to Bcl-2. Recent evidence indicates that proteins of the Bcl-2 family can influence ER Ca2+ content, a critical determinant of cellular sensitivity to apoptosis. The discovery of the PLN/HAX-1 interaction therefore unveils an important new link between Ca2+ homeostasis and cell survival, with significant therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fabiato A, Fabiato F (1979) Calcium and cardiac excitation–contraction coupling. Annu Rev Physiol 41:473–84

    Article  PubMed  CAS  Google Scholar 

  2. Lederer WJ, Berlin JR, Cohen NM, Hadley RW, Bers DM, Cannell MB (1990) Excitation–contraction coupling in heart cells. Roles of the sodium–calcium exchange, the calcium current, and the sarcoplasmic reticulum. Ann NY Acad Sci 588:190–206

    Article  PubMed  CAS  Google Scholar 

  3. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  4. Bers DM (2002) Calcium and cardiac rhythms: physiological and pathophysiological. Circ Res 90:14–17

    PubMed  CAS  Google Scholar 

  5. Houser SR, Piacentino V III, Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32:1595–1607

    Article  PubMed  CAS  Google Scholar 

  6. Dash R, Frank KF, Carr AN, Moravec CS, Kranias EG (2001) Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. J Mol Cell Cardiol 33:1345–1353

    Article  PubMed  CAS  Google Scholar 

  7. Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969

    Article  PubMed  CAS  Google Scholar 

  8. Gustafsson AB, Gottlieb RA (2007) Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol 292:C45–C51

    Article  PubMed  CAS  Google Scholar 

  9. Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86:1107–1113

    PubMed  CAS  Google Scholar 

  10. Narula J, Kolodgie FD, Virmani R (2000) Apoptosis and cardiomyopathy. Curr Opin Cardiol 15:183–188

    Article  PubMed  CAS  Google Scholar 

  11. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease—a novel therapeutic target? FASEB J 16:135–146

    Article  PubMed  CAS  Google Scholar 

  12. Narula J, Haider N, Arbustini E, Chandrashekhar Y (2006) Mechanisms of disease: apoptosis in heart failure—seeing hope in death. Nat Clin Pract Cardiovasc Med 3:681–688

    Article  PubMed  CAS  Google Scholar 

  13. Khoynezhad A, Jalali Z, Tortolani AJ (2007) A synopsis of research in cardiac apoptosis and its application to congestive heart failure. Tex Heart Inst J 34:352–359

    PubMed  Google Scholar 

  14. Lytton J, Zarain-Herzberg A, Periasamy M, MacLennan DH (1989) Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem 264:7059–7065

    PubMed  CAS  Google Scholar 

  15. Zarain-Herzberg A, MacLennan DH, Periasamy M (1990) Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2(+)-ATPase gene. J Biol Chem 265:4670–4677

    PubMed  CAS  Google Scholar 

  16. MacLennan DH, Rice WJ, Green NM (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem 272:28815–28818

    Article  PubMed  CAS  Google Scholar 

  17. Campbell AM, Kessler PD, Sagara Y, Inesi G, Fambrough DM (1991) Nucleotide sequences of avian cardiac and brain SR/ER Ca(2+)-ATPases and functional comparisons with fast twitch Ca(2+)-ATPase. Calcium affinities and inhibitor effects. J Biol Chem 266:16050–16055

    PubMed  CAS  Google Scholar 

  18. Asahi M, Nakayama H, Tada M, Otsu K (2003) Regulation of sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatase by phospholamban and sarcolipin: implication for cardiac hypertrophy and failure. Trends Cardiovasc Med 13:152–157

    Article  PubMed  CAS  Google Scholar 

  19. He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100:380–389

    Article  PubMed  CAS  Google Scholar 

  20. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M (1998) Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83:1205–1214

    PubMed  CAS  Google Scholar 

  21. Vetter R, Rehfeld U, Reissfelder C, Weiss W, Wagner KD, Gunther J, Hammes A, Tschope C, Dillmann W, Paul M (2002) Transgenic overexpression of the sarcoplasmic reticulum Ca2+ ATPase improves reticular Ca2+ handling in normal and diabetic rat hearts. FASEB J 16:1657–1659

    PubMed  CAS  Google Scholar 

  22. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 274:2556–2562

    Article  PubMed  CAS  Google Scholar 

  23. Schultz Jel J, Glascock BJ, Witt SA, Nieman ML, Nattamai KJ, Liu LH, Lorenz JN, Shull GE, Kimball TR, Periasamy M (2004) Accelerated onset of heart failure in mice during pressure overload with chronically decreased SERCA2 calcium pump activity. Am J Physiol Heart Circ Physiol 286:H1146–H1153

    Article  PubMed  Google Scholar 

  24. Ji Y, Lalli MJ, Babu GJ, Xu Y, Kirkpatrick DL, Liu LH, Chiamvimonvat N, Walsh RA, Shull GE, Periasamy M (2000) Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. J Biol Chem 275:38073–38080

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt AG, Haghighi K, Frank B, Pater L, Dorn GW, Walsh RA, Kranias EG (2003) Polymorphic SERCA2a variants do not account for inter-individual differences in phospholamban–SERCA2a interactions in human heart failure. J Mol Cell Cardiol 35:867–870

    Article  PubMed  CAS  Google Scholar 

  26. Miyauchi Y, Daiho T, Yamasaki K, Takahashi H, Ishida-Yamamoto A, Danko S, Suzuki H, Iizuka H (2006) Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. J Biol Chem 281:22882–22895

    Article  PubMed  CAS  Google Scholar 

  27. Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, Smith M, Munro CS, O'Donovan M, Craddock N, Kucherlapati R, Rees JL, Owen M, Lathrop GM, Monaco AP, Strachan T, Hovnanian A (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21:271–277

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz-Perez VL, Carter SA, Healy E, Todd C, Rees JL, Steijlen PM, Carmichael AJ, Lewis HM, Hohl D, Itin P, Vahlquist A, Gobello T, Mazzanti C, Reggazini R, Nagy G, Munro CS, Strachan T (1999) ATP2A2 mutations in Darier’s disease: variant cutaneous phenotypes are associated with missense mutations, but neuropsychiatric features are independent of mutation class. Hum Mol Genet 8:1621–1630

    Article  PubMed  CAS  Google Scholar 

  29. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970

    Article  PubMed  CAS  Google Scholar 

  30. Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS (1996) Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem 163–164:285–290

    Article  PubMed  Google Scholar 

  31. O'Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84:562–570

    PubMed  Google Scholar 

  32. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469

    PubMed  CAS  Google Scholar 

  33. Arai M, Matsui H, Periasamy M (1994) Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74:555–564

    PubMed  CAS  Google Scholar 

  34. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442

    PubMed  CAS  Google Scholar 

  35. Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–289

    Article  PubMed  CAS  Google Scholar 

  36. Pieske B, Maier LS, Bers DM, Hasenfuss G (1999) Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res 85:38–46

    PubMed  CAS  Google Scholar 

  37. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784

    PubMed  CAS  Google Scholar 

  38. Arvanitis DA, Vafiadaki E, Fan GC, Mitton BA, Gregory KN, Del Monte F, Kontrogianni-Konstantopoulos A, Sanoudou D, Kranias EG (2007) Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am J Physiol Heart Circ Physiol 293:H1581–H1589

    Article  PubMed  CAS  Google Scholar 

  39. Ihara Y, Kageyama K, Kondo T (2005) Overexpression of calreticulin sensitizes SERCA2a to oxidative stress. Biochem Biophys Res Commun 329:1343–1349

    Article  PubMed  CAS  Google Scholar 

  40. Kiewitz R, Acklin C, Schafer BW, Maco B, Uhrik B, Wuytack F, Erne P, Heizmann CW (2003) Ca2+-dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+-ATPase2a and phospholamban in the human heart. Biochem Biophys Res Commun 306:550–557

    Article  PubMed  CAS  Google Scholar 

  41. Nediani C, Celli A, Fiorillo C, Ponziani V, Giannini L, Nassi P (2003) Acylphosphatase interferes with SERCA2a-PLN association. Biochem Biophys Res Commun 301:948–951

    Article  PubMed  CAS  Google Scholar 

  42. Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schoneich C (2004) Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 383:361–370

    Article  PubMed  CAS  Google Scholar 

  43. Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W (1998) Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene 17:1903–1910

    Article  PubMed  CAS  Google Scholar 

  44. Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42:903–911

    Article  PubMed  CAS  Google Scholar 

  45. Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78:921–947

    PubMed  CAS  Google Scholar 

  46. Kadambi VJ, Kranias EG (1997) Phospholamban: a protein coming of age. Biochem Biophys Res Commun 239:1–5

    Article  PubMed  CAS  Google Scholar 

  47. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  PubMed  CAS  Google Scholar 

  48. Fujii J, Ueno A, Kitano K, Tanaka S, Kadoma M, Tada M (1987) Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. J Clin Invest 79:301–304

    Article  PubMed  CAS  Google Scholar 

  49. James P, Inui M, Tada M, Chiesi M, Carafoli E (1989) Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342:90–92

    Article  PubMed  CAS  Google Scholar 

  50. Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH (1994) Amino acids Lys–Asp–Asp–Lys–Pro–Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem 269:22929–22932

    PubMed  CAS  Google Scholar 

  51. Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH (1994) Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 269:3088–3094

    PubMed  CAS  Google Scholar 

  52. Sharma P, Patchell VB, Gao Y, Evans JS, Levine BA (2001) Cytoplasmic interactions between phospholamban residues 1–20 and the calcium-activated ATPase of the sarcoplasmic reticulum. Biochem J 335:699–706

    Google Scholar 

  53. Kimura Y, Asahi M, Kurzydlowski K, Tada M, MacLennan DH (1998) Phospholamban domain Ib mutations influence functional interactions with the Ca2+-ATPase isoform of cardiac sarcoplasmic reticulum. J Biol Chem 273:14238–14241

    Article  PubMed  CAS  Google Scholar 

  54. Chen Z, Stokes DL, Jones LR (2005) Role of leucine 31 of phospholamban in structural and functional interactions with the Ca2+ pump of cardiac sarcoplasmic reticulum. J Biol Chem 280:10530–10539

    Article  PubMed  CAS  Google Scholar 

  55. Morris GL, Cheng HC, Colyer J, Wang JH (1991) Phospholamban regulation of cardiac sarcoplasmic reticulum (Ca(2+)-Mg2+)-ATPase. Mechanism of regulation and site of monoclonal antibody interaction. J Biol Chem 266:11270–11275

    PubMed  CAS  Google Scholar 

  56. Wegener AD, Simmerman HK, Lindemann JP, Jones LR (1989) Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem 264:11468–11474

    PubMed  CAS  Google Scholar 

  57. Kimura Y, Kurzydlowski K, Tada M, MacLennan DH (1997) Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 272:15061–15064

    Article  PubMed  CAS  Google Scholar 

  58. Zvaritch E, Backx PH, Jirik F, Kimura Y, de Leon S, Schmidt AG, Hoit BD, Lester JW, Kranias EG, MacLennan DH (2000) The transgenic expression of highly inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac contractility. J Biol Chem 275:14985–14991

    Article  PubMed  CAS  Google Scholar 

  59. Cantilina T, Sagara Y, Inesi G, Jones LR (1993) Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem 268:17018–17025

    PubMed  CAS  Google Scholar 

  60. Inui M, Chamberlain BK, Saito A, Fleischer S (1986) The nature of the modulation of Ca2+ transport as studied by reconstitution of cardiac sarcoplasmic reticulum. J Biol Chem 261:1794–1800

    PubMed  CAS  Google Scholar 

  61. Tada M, Katz AM (1982) Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol 44:401–423

    Article  PubMed  CAS  Google Scholar 

  62. Slack JP, Grupp IL, Dash R, Holder D, Schmidt A, Gerst MJ, Tamura T, Tilgmann C, James PF, Johnson R, Gerdes AM, Kranias EG (2001) The enhanced contractility of the phospholamban-deficient mouse heart persists with aging. J Mol Cell Cardiol 33:1031–1040

    Article  PubMed  CAS  Google Scholar 

  63. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75:401–409

    PubMed  CAS  Google Scholar 

  64. Kiss E, Edes I, Sato Y, Luo W, Liggett SB, Kranias EG (1997) Beta-adrenergic regulation of cAMP and protein phosphorylation in phospholamban-knockout mouse hearts. Am J Physiol 272:H785–H790

    PubMed  CAS  Google Scholar 

  65. Lorenz JN, Kranias EG (1997) Regulatory effects of phospholamban on cardiac function in intact mice. Am J Physiol 273:H2826–H2831

    PubMed  CAS  Google Scholar 

  66. Luo W, Wolska BM, Grupp IL, Harrer JM, Haghighi K, Ferguson DG, Slack JP, Grupp G, Doetschman T, Solaro RJ, Kranias EG (1996) Phospholamban gene dosage effects in the mammalian heart. Circ Res 78:839–847

    PubMed  CAS  Google Scholar 

  67. Zhai J, Schmidt AG, Hoit BD, Kimura Y, MacLennan DH, Kranias EG (2000) Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo. J Biol Chem 275:10538–10544

    Article  PubMed  CAS  Google Scholar 

  68. Haghighi K, Schmidt AG, Hoit BD, Brittsan AG, Yatani A, Lester JW, Zhai J, Kimura Y, Dorn GW II, MacLennan DH, Kranias EG (2001) Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J Biol Chem 276:24145–24152

    Article  PubMed  CAS  Google Scholar 

  69. Schmidt AG, Zhai J, Carr AN, Gerst MJ, Lorenz JN, Pollesello P, Annila A, Hoit BD, Kranias EG (2002) Structural and functional implications of the phospholamban hinge domain: impaired SR Ca2+ uptake as a primary cause of heart failure. Cardiovasc Res 56:248–259

    Article  PubMed  CAS  Google Scholar 

  70. Luo W, Chu G, Sato Y, Zhou Z, Kadambi VJ, Kranias EG (1998) Transgenic approaches to define the functional role of dual site phospholamban phosphorylation. J Biol Chem 273:4734–4739

    Article  PubMed  CAS  Google Scholar 

  71. Kuschel M, Karczewski P, Hempel P, Schlegel WP, Krause EG, Bartel S (1999) Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Am J Physiol 276:H1625–H1633

    PubMed  CAS  Google Scholar 

  72. Chu G, Lester JW, Young KB, Luo W, Zhai J, Kranias EG (2000) A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta -agonists. J Biol Chem 275:38938–38943

    Article  PubMed  CAS  Google Scholar 

  73. Zhao W, Uehara Y, Chu G, Song Q, Qian J, Young K, Kranias EG (2004) Threonine-17 phosphorylation of phospholamban: a key determinant of frequency-dependent increase of cardiac contractility. J Mol Cell Cardiol 37:607–612

    Article  PubMed  CAS  Google Scholar 

  74. Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, Kranias EG, MacLennan DH, Seidman JG, Seidman CE (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1413

    Article  PubMed  CAS  Google Scholar 

  75. Haghighi K, Kolokathis F, Gramolini AO, Waggoner JR, Pater L, Lynch RA, Fan GC, Tsiapras D, Parekh RR, Dorn GWn, Maclennan DH, Kremastinos DT, Kranias EG (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103:1388–1393

    Article  PubMed  CAS  Google Scholar 

  76. Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D, Hahn HS, Adamopoulos S, Liggett SB, Dorn GWn, MacLennan DH, Kremastinos DT, Kranias EG (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 111:869–876

    PubMed  CAS  Google Scholar 

  77. Haghighi K, Chen G, Sato Y, Fan GC, He S, Kolokathis F, Pater L, Paraskevaidis I, Jones WK, Dorn Ii GW, Th Kremastinos D, Kranias EG (2008) A human phospholamban promoter polymorphism in dilated cardiomyopathy alters transcriptional regulation by glucocorticoids. Hum Mutat (in press)

  78. Minamisawa S, Sato Y, Tatsuguchi Y, Fujino T, Imamura S, Uetsuka Y, Nakazawa M, Matsuoka R (2003) Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem Biophys Res Commun 304:1–4

    Article  PubMed  CAS  Google Scholar 

  79. Medin M, Hermida-Prieto M, Monserrat L, Laredo R, Rodriguez-Rey JC, Fernandez X, Castro-Beiras A (2007) Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN −42 C>G mutation. Eur J Heart Fail 9:37–43

    Article  PubMed  CAS  Google Scholar 

  80. Zhao W, Yuan Q, Qian J, Waggoner JR, Pathak A, Chu G, Mitton B, Sun X, Jin J, Braz JC, Hahn HS, Marreez Y, Syed F, Pollesello P, Annila A, Wang HS, Schultz Jel J, Molkentin JD, Liggett SB, Dorn GW II, Kranias EG (2006) The presence of Lys27 instead of Asn27 in human phospholamban promotes sarcoplasmic reticulum Ca2+-ATPase superinhibition and cardiac remodeling. Circulation 113:995–1004

    Article  PubMed  CAS  Google Scholar 

  81. Vafiadaki E, Sanoudou D, Arvanitis DA, Catino DH, Kranias EG, Kontrogianni-Konstantopoulos A (2007) Phospholamban interacts with HAX-1, a mitochondrial protein with anti-apoptotic function. J Mol Biol 367:65–79

    Article  PubMed  CAS  Google Scholar 

  82. Suzuki Y, Demoliere C, Kitamura D, Takeshita H, Deuschle U, Watanabe T (1997) HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family of tyrosine kinases. J Immunol 158:2736–2744

    PubMed  CAS  Google Scholar 

  83. Kawaguchi Y, Nakajima K, Igarashi M, Morita T, Tanaka M, Suzuki M, Yokoyama A, Matsuda G, Kato K, Kanamori M, Hirai K (2000) Interaction of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol 74:10104–10111

    Article  PubMed  CAS  Google Scholar 

  84. Matsuda G, Nakajima K, Kawaguchi Y, Yamanashi Y, Hirai K (2003) Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) forms complexes with a cellular anti-apoptosis protein Bcl-2 or its EBV counterpart BHRF1 through HS1-associated protein X-1. Microbiol Immunol 47:91–99

    PubMed  CAS  Google Scholar 

  85. Sharp TV, Wang HW, Koumi A, Hollyman D, Endo Y, Ye H, Du MQ, Boshoff C (2002) K15 protein of Kaposi’s sarcoma-associated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function. J Virol 76:802–816

    Article  PubMed  CAS  Google Scholar 

  86. Yedavalli VS, Shih HM, Chiang YP, Lu CY, Chang LY, Chen MY, Chuang CY, Dayton AI, Jeang KT, Huang LM (2005) Human immunodeficiency virus type 1 Vpr interacts with antiapoptotic mitochondrial protein HAX-1. J Virol 79:13735–13746

    Article  PubMed  CAS  Google Scholar 

  87. Modem S, Reddy TR (2008) An anti-apoptotic protein, Hax-1, inhibits the HIV-1 rev function by altering its sub-cellular localization. J Cell Physiol 214:14–19

    Article  PubMed  CAS  Google Scholar 

  88. Dufva M, Olsson M, Rymo L (2001) Epstein–Barr virus nuclear antigen 5 interacts with HAX-1, a possible component of the B-cell receptor signalling pathway. J Gen Virol 82:1581–1587

    PubMed  CAS  Google Scholar 

  89. Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R (2000) The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci USA 97:4017–4022

    Article  PubMed  CAS  Google Scholar 

  90. Radhika V, Onesime D, Ha JH, Dhanasekaran N (2004) Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 279:49406–49413

    Article  PubMed  CAS  Google Scholar 

  91. Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, Violette S, Weinreb P, Hart IR, Marshall JF (2007) HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 67:5275–5284

    Article  PubMed  CAS  Google Scholar 

  92. Yin H, Morioka H, Towle CA, Vidal M, Watanabe T, Weissbach L (2001) Evidence that HAX-1 is an interleukin-1 alpha N-terminal binding protein. Cytokine 15:122–137

    Article  PubMed  CAS  Google Scholar 

  93. Kawaguchi Y, Nishimagi E, Tochimoto A, Kawamoto M, Katsumata Y, Soejima M, Kanno T, Kamatani N, Hara M (2006) Intracellular IL-1{alpha}-binding proteins contribute to biological functions of endogenous IL-1{alpha} in systemic sclerosis fibroblasts. Proc Natl Acad Sci USA 103:14501–14506

    Article  PubMed  CAS  Google Scholar 

  94. Ortiz DF, Moseley J, Calderon G, Swift AL, Li S, Arias IM (2004) Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin–Darby canine kidney cells. J Biol Chem 279:32761–32770

    Article  PubMed  CAS  Google Scholar 

  95. Kasashima K, Ohta E, Kagawa Y, Endo H (2006) The pleiotropic human prohibitin 2: mitochondrial functions and estrogen receptor-dependent nuclear translocation. J Biol Chem 281:36401–36410

    Article  PubMed  CAS  Google Scholar 

  96. Han Y, Chen Y-S, Liu Z, Bodyak N, Rigor D, Bisping E, Pu WT, Kang PM (2006) Overexpression of HAX-1 protects cardiac myocytes from apoptosis through caspase-9 inhibition. Circ Res 99:415–423

    Article  PubMed  CAS  Google Scholar 

  97. Cilenti L, Soundarapandian MM, Kyriazis GA, Stratico V, Singh S, Gupta S, Bonventre JV, Alnemri ES, Zervos AS (2004) Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J Biol Chem 279:50295–50301

    Article  PubMed  CAS  Google Scholar 

  98. Sarnowska E, Grzybowska EA, Sobczak K, Konopinski R, Wilczynska A, Szwarc M, Sarnowski TJ, Krzyzosiak WJ, Siedlecki JA (2007) Hairpin structure within the 3′UTR of DNA polymerase beta mRNA acts as a post-transcriptional regulatory element and interacts with Hax-1. Nucleic Acids Res 35:5499–5510

    Article  PubMed  CAS  Google Scholar 

  99. Al-Maghrebi M, Brule H, Padkina M, Allen C, Holmes WM, Zehner ZE (2002) The 3′ untranslated region of human vimentin mRNA interacts with protein complexes containing eEF-1gamma and HAX-1. Nucleic Acids Res 30:5017–5028

    Article  PubMed  CAS  Google Scholar 

  100. Lauriat TL, Dracheva S, Kremerskothen J, Duning K, Haroutunian V, Buxbaum JD, Hyde TM, Kleinman JE, Alison ML (2006) Characterization of KIAA0513, a novel signaling molecule that interacts with modulators of neuroplasticity, apoptosis, and the cytoskeleton. Brain Res 1121:1–11

    Article  PubMed  CAS  Google Scholar 

  101. Mirmohammadsadegh A, Tartler U, Michel G, Baer A, Walz M, Wolf R, Ruzicka T, Hengge UR (2003) HAX-1, identified by differential display reverse transcription polymerase chain reaction, is overexpressed in lesional psoriasis. J Invest Dermatol 120:1045–1051

    Article  PubMed  CAS  Google Scholar 

  102. Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17:511–517

    Article  PubMed  CAS  Google Scholar 

  103. Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA, Rathinam C, Boztug K, Schwinzer B, Rezaei N, Bohn G, Melin M, Carlsson G, Fadeel B, Dahl N, Palmblad J, Henter JI, Zeidler C, Grimbacher B, Welte K (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39:86–92

    Article  PubMed  CAS  Google Scholar 

  104. Bohn G, Welte K, Klein C (2007) Severe congenital neutropenia: new genes explain an old disease. Curr Opin Rheumatol 19:644–650

    Article  PubMed  Google Scholar 

  105. Matsubara K, Imai K, Okada S, Miki M, Ishikawa N, Tsumura M, Kato T, Ohara O, Nonoyama S, Kobayashi M (2007) Severe developmental delay and epilepsy in a Japanese patient with severe congenital neutropenia due to HAX1 deficiency. Haematologica 92:e123–e125

    Article  PubMed  CAS  Google Scholar 

  106. Rezaei N, Moin M, Pourpak Z, Ramyar A, Izadyar M, Chavoshzadeh Z, Sherkat R, Aghamohammadi A, Yeganeh M, Mahmoudi M, Mahjoub F, Germeshausen M, Grudzien M, Horwitz MS, Klein C, Farhoudi A (2007) The clinical, immunohematological, and molecular study of Iranian patients with severe congenital neutropenia. J Clin Immunol 27:525–533

    Article  PubMed  Google Scholar 

  107. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  PubMed  CAS  Google Scholar 

  108. Annis MG, Yethon JA, Leber B, Andrews DW (2004) There is more to life and death than mitochondria: Bcl-2 proteins at the endoplasmic reticulum. Biochim Biophys Acta 1644:115–123

    Article  PubMed  CAS  Google Scholar 

  109. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  110. Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis—the calcium connection. Science 300:65–67

    Article  PubMed  CAS  Google Scholar 

  111. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. Embo J 20:2690–2701

    Article  PubMed  CAS  Google Scholar 

  112. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  PubMed  CAS  Google Scholar 

  113. Szabadkai G, Rizzuto R (2004) Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? FEBS Lett 567:111–115

    Article  PubMed  CAS  Google Scholar 

  114. Franzini-Armstrong C (2007) ER-mitochondria communication. How privileged? Physiology (Bethesda) 22:261–268

    CAS  Google Scholar 

  115. Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y (1994) Multiple subcellular localization of bcl-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes. Cancer Res 54:2468–2471

    PubMed  CAS  Google Scholar 

  116. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53:4701–4714

    PubMed  CAS  Google Scholar 

  117. Lithgow T, van Driel R, Bertram JF, Strasser A (1994) The protein product of the oncogene bcl-2 is a component of the nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane. Cell Growth Differ 5:411–417

    PubMed  CAS  Google Scholar 

  118. Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    Article  PubMed  CAS  Google Scholar 

  119. Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ, Swisher SG (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277:9219–9225

    Article  PubMed  CAS  Google Scholar 

  120. Hsu YT, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci USA 94:3668–3672

    Article  PubMed  CAS  Google Scholar 

  121. Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW (1996) Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 15:4130–4141

    PubMed  CAS  Google Scholar 

  122. Rudner J, Lepple-Wienhues A, Budach W, Berschauer J, Friedrich B, Wesselborg S, Schulze-Osthoff K, Belka C (2001) Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci 114:4161–4172

    PubMed  CAS  Google Scholar 

  123. Hacki J, Egger L, Monney L, Conus S, Rosse T, Fellay I, Borner C (2000) Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19:2286–2295

    Article  PubMed  CAS  Google Scholar 

  124. Annis MG, Zamzami N, Zhu W, Penn LZ, Kroemer G, Leber B, Andrews DW (2001) Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 20:1939–1952

    Article  PubMed  CAS  Google Scholar 

  125. He H, Lam M, McCormick TS, Distelhorst CW (1997) Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 138:1219–1228

    Article  PubMed  CAS  Google Scholar 

  126. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed  CAS  Google Scholar 

  127. Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C, Roudbaraki M, Mauroy B, Wuytack F, Prevarskaya N (2002) Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 1:169–179

    Article  PubMed  CAS  Google Scholar 

  128. Foyouzi-Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP, Demaurex N, Krause KH (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 97:5723–5728

    Article  PubMed  CAS  Google Scholar 

  129. Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB (2002) Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 99:9830–9835

    Article  PubMed  CAS  Google Scholar 

  130. Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C (2007) Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci USA 104:12565–12570

    Article  PubMed  CAS  Google Scholar 

  131. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028

    Article  PubMed  CAS  Google Scholar 

  132. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG, O'Neil RG, McConkey DJ (2002) Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277:20301–20308

    Article  PubMed  CAS  Google Scholar 

  133. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    Article  PubMed  CAS  Google Scholar 

  134. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110

    Article  PubMed  CAS  Google Scholar 

  135. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101:17404–17409

    Article  PubMed  CAS  Google Scholar 

  136. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA, Velez P, Distelhorst CW (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166:193–203

    Article  PubMed  CAS  Google Scholar 

  137. Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91

    Article  PubMed  CAS  Google Scholar 

  138. Dremina ES, Sharov VS, Schoneich C (2006) Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: a possible mechanism for SERCA inactivation. Biochemistry 45:175–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by research funds from the Biomedical Research Foundation, Academy of Athens; the John F. Kostopoulos Foundation; the Hellenic Cardiological Society; NIH HL26057, HL64018, and HL77101; the Leducq Foundation Trans-Antlantic alliance; and by the European Union Sixth Framework Program for Research and Technological Development, “Life Sciences, Genomics and Biotechnology for Health,” Valapodyn, contract #LSHG-CT-2006-037277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina Sanoudou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vafiadaki, E., Papalouka, V., Arvanitis, D.A. et al. The role of SERCA2a/PLN complex, Ca2+ homeostasis, and anti-apoptotic proteins in determining cell fate. Pflugers Arch - Eur J Physiol 457, 687–700 (2009). https://doi.org/10.1007/s00424-008-0506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0506-5

Keywords

Navigation