Skip to main content
Log in

Kv1 and Kir2 potassium channels are expressed in rat brain endothelial cells

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The endothelial cells of the brain microvasculature, which constitute the blood–brain barrier, secrete K+ into brain interstitial fluid. K+ channels are predicted to have a central role to play in this process. The aim of the following study was to characterise K+ channels in primary cultures of endothelial cells isolated from rat brain microvessels by whole-cell patch clamp and real-time polymerase chain reaction. In the 4 h after plating, the rat brain endothelial cells expressed predominantly a depolarisation-activated delayed-rectifying outward K+ conductance and a time-independent inwardly rectifying K+ conductance prominent at hyperpolarising potentials. The outward current was inhibited by 1 mM 4-aminopyridine (4AP), 10 nM margatoxin and 100 nM dendrotoxin-K, indicating the involvement of Kv1 channels. The half maximal activation voltage and time constants of activation and inactivation of the 4AP-sensitive current were similar to Kv1.3. The inwardly rectifying conductance was inhibited by Ba2+ in a dose- and voltage-dependent fashion; the kinetics of which resembled Kir2 channels. Quantification of messenger ribonucleic acid transcripts revealed Kv1.3 > 1.2 = 1.4 = 1.5 = 1.6 and Kir2.1 = 2 > 2.3. In current-clamp experiments, both 4AP and Ba2+ depolarised the membrane potential. In conclusion, rat brain endothelial cells express Kv1 and Kir2 K+ channels, both of which participate in setting membrane potential and could mediate K+ secretion into the brain interstitial fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbott NJ, Hughes CC, Revest PA, Greenwood J (1992) Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci 103:23–37

    PubMed  CAS  Google Scholar 

  2. Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood–brain barrier. Prog Drug Res 61:39–78

    PubMed  CAS  Google Scholar 

  3. Betz AL, Firth JA, Goldstein GW (1980) Polarity of the blood–brain-barrier—distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res 192:17–28

    Article  PubMed  CAS  Google Scholar 

  4. Brown PD, Davies SL, Seake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970

    Article  PubMed  CAS  Google Scholar 

  5. Chung I, Schlichter LC (1997) Regulation of native Kv1.3 channels by cAMP-dependent protein phosphorylation. Am J Physiol 42:C622–C633

    Google Scholar 

  6. Csanady L, Adam-Vizi V (2003) Ca2+- and voltage-dependent gating of Ca2+- and ATP-sensitive cationic channels in brain capillary endothelium. Biophys J 85:313–327

    PubMed  CAS  Google Scholar 

  7. Csanady L, Adam-Vizi V (2004) Antagonistic regulation of native Ca2+- and ATP-sensitive cation channels in brain capillaries by nucleotides and decavanadate. J Gen Physiol 123:743–757

    Article  PubMed  CAS  Google Scholar 

  8. Davson H, Segal MB (1996) Physiology of the CSF and blood–brain barriers. CRC, Boca Raton, FL

    Google Scholar 

  9. Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A (1998) The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci 18:8625–8636

    PubMed  CAS  Google Scholar 

  10. Foroutan S, Brillault J, Forbush B, O’Donnell ME (2005) Moderate-to-severe ischemic conditions increase activity and phosphorylation of the cerebral microvascular endothelial cell Na+–K+–Cl cotransporter. Am J Physiol 289:C1492–C1501

    Article  CAS  Google Scholar 

  11. Fraser SP, Grimes JA, Diss JKJ, Stewart D, Dolly JO, Djamgoz MBA (2003) Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation. Pflugers Archiv 446:559–571

    Article  PubMed  CAS  Google Scholar 

  12. Garcia-calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, Garcia ML (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem 268:18866–18874

    PubMed  CAS  Google Scholar 

  13. Gögelein H, Popp R, Hoyer J (1998) Patch clamp techniques with isolated brain microvessel membranes. In: Pardridge W (ed) Introduction to the blood–brain barrier methodology, biology and pathology. Cambridge University Press, Cambridge, pp 71–78

    Google Scholar 

  14. Grissmer S, Dethlefs B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD, Chandy KG (1990) Expression and chromosomal localization of a lymphocyte-K+ channel gene. Proc Natl Acad Sci USA 87:9411–9415

    Article  PubMed  CAS  Google Scholar 

  15. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of 5 cloned voltage-gated K+ channels, types Kv1.1, Kv1.2, Kv1.3, Kv1.5, and Kv3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234

    PubMed  CAS  Google Scholar 

  16. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang XL (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508

    Article  PubMed  CAS  Google Scholar 

  17. Hopkins WF (1998) Toxin and subunit specificity of blocking affinity of three peptide toxins for heteromultimeric, voltage-gated potassium channels expressed in Xenopus oocytes. J Pharmacol Exp Ther 285:1051–1060

    PubMed  CAS  Google Scholar 

  18. Hoyer J, Popp R, Meyer J, Galla HJ, Gogelein H (1991) Angiotensin-II, vasopressin and Gtp[γ-S] inhibit inward-rectifying K channels in porcine cerebral capillary endothelial cells. J Membr Biol 123:55–62

    Article  PubMed  CAS  Google Scholar 

  19. Kawai N, Yamamoto T, Yamamoto H, McCarron RM, Spatz M (1995) Endothelin-1 stimulates Na+,K+-ATPase and Na+–K+–Cl cotransport through ETa receptors and protein kinase C-dependent pathway in cerebral capillary endothelium. J Neurochem 65:1588–1596

    Article  PubMed  CAS  Google Scholar 

  20. Koschak A, Bugianesi RM, Mitterdorfer J, Kaczorowski GJ, Garcia ML, Knaus HG (1998) Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom. J Biol Chem 273:2639–2644

    Article  PubMed  CAS  Google Scholar 

  21. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP (1992) Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci USA 89:10094–10098

    Article  PubMed  CAS  Google Scholar 

  22. Liu GX, Derst C, Schlichthorl G, Heinen SN, Seebohm G, Bruggemann A, Kummer W, Veh RW, Daut J, Preisig-Muller R (2001) Comparison of cloned Kir2 channels with native inward rectifier K+. channels from guinea-pig cardiomyocytes. J Physiol (Lond) 532:115–126

    Article  CAS  Google Scholar 

  23. Masuzawa T, Ohta T, Kawamura M, Nakahara N, Sato F (1984) Immunohistochemical localization of Na+,K+-ATPase in the choroid plexus. Brain Res 302:357–362

    Article  PubMed  CAS  Google Scholar 

  24. Nag S (2003) Ultracytochemical studies of the compromised blood–brain barrier. In: Nag S (ed) The blood–brain barrier: biology and research protocols. Humana, Totowa, NJ

    Google Scholar 

  25. Nakamura N, Suzuki Y, Sakuta H, Ookata K, Kawahara K, Hirose S (1999) Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+,K+-ATPase. Biochem J 342:329–336

    Article  PubMed  CAS  Google Scholar 

  26. Ningaraj NS, Rao M, Hashizume K, Asotra K, Black KL (2002) Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 301:838–851

    Article  PubMed  CAS  Google Scholar 

  27. Pearson MM, Lu J, Mount DB, Delpire E (2001) Localization of the K+–Cl cotransporter, KCC3, in the central and peripheral nervous systems: Expression in the choroid plexus, large neurons and white matter tracts. Neuroscience 103:481–491

    Article  PubMed  CAS  Google Scholar 

  28. Plotkin MD, Kaplan MR, Peterson LN, Gullans SR, Hebert SC, Delpire E (1997) Expression of the Na+–K+–2Cl cotransporter BSC2 in the nervous system. Am J Physiol 41:C173–C183

    Google Scholar 

  29. Popp R, Gogelein H (1992) A calcium and ATP sensitive nonselective cation channel in the antiluminal membrane of rat cerebral capillary endothelial cells. Biochim Biophys Acta 1108:59–66

    Article  PubMed  CAS  Google Scholar 

  30. Popp R, Gogelein H (1993) Outward-rectifying potassium channels in endothelial cells from pig cerebral capillaries. Pflugers Archiv 422:R120 (Abstracts)

    Google Scholar 

  31. Popp R, Hoyer J, Meyer J, Galla HJ, Gogelein H (1992) Stretch-activated nonselective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol (Lond) 454:435–449

    CAS  Google Scholar 

  32. Preisig-Muller R, Schlichthorl G, Goerge T, Heinen S, Bruggemann A, Rajan S, Derst C, Veh RW, Daut J (2002) Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci USA 99:7774–7779

    Article  PubMed  CAS  Google Scholar 

  33. Robertson B, Owen D, Stow J, Butler C, Newland C (1996) Novel effects of dendrotoxin homologues on subtypes of mammalian Kv1 potassium channels expressed in Xenopus oocytes. FEBS Lett 383:26–30

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez del Pino MM, Hawkins RA, Peterson DR (1995) Biochemical discrimination between luminal and abluminal enzyme and transport activities of the blood–brain-barrier. J Biol Chem 270:14907–14912

    Article  PubMed  CAS  Google Scholar 

  35. Schram G, Pourrier M, Wang ZG, White M, Nattel S (2003) Barium block of Kir2 and human cardiac inward rectifier currents: evidence for subunit-heteromeric contribution to native currents. Cardiovasc Res 59:328–338

    Article  PubMed  CAS  Google Scholar 

  36. Shieh RC, Chang JC, Arreola J (1998) Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes. Biophys J 75:2313–2322

    Article  PubMed  CAS  Google Scholar 

  37. Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35:155–164

    Article  PubMed  CAS  Google Scholar 

  38. Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8:254–267

    PubMed  CAS  Google Scholar 

  39. Speake T, Kibble JD, Brown PD (2004) Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+ conductance in rat choroid plexus epithelial cells. Am J Physiol 286:C611–C620

    Article  CAS  Google Scholar 

  40. Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ (1999) Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem Cell Biol 112:457–465

    Article  PubMed  CAS  Google Scholar 

  41. Taylor CJ, Nicola PA, Wang SS, Barrand MA, Hladky SB (2006) Transporters involved in regulation of intracellular pH in primary cultured rat brain endothelial cells. J Physiol (Lond) 576:769–785

    Article  CAS  Google Scholar 

  42. Tytgat J, Debont T, Carmeliet E, Daenens P (1995) The α-dendrotoxin footprint on a mammalian potassium channel. J Biol Chem 270:24776–24781

    Article  PubMed  CAS  Google Scholar 

  43. van Renterghem C, Vigne P, Frelin C (1995) A charybdotoxin-sensitive, Ca2+-activated K+. channel with inward, rectifying properties in brain microvascular endothelial cells—properties and activation by endothelins. J Neurochem 65:1274–1281

    Article  PubMed  Google Scholar 

  44. von Weikersthal SF, Barrand MA, Hladky SB (1999) Functional and molecular characterization of a volume-sensitive chloride current in rat brain endothelial cells. J Physiol (Lond) 516:75–84

    Article  Google Scholar 

  45. Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  PubMed  CAS  Google Scholar 

  46. Wright EM (1972) Mechanisms of ion transport across choroid plexus. J Physiol (Lond) 226:545–571

    CAS  Google Scholar 

  47. Yamazaki D, Aoyama M, Ohya S, Muraki K, Asai K, Imaizumi Y (2006) Novel functions of small conductance Ca2+-activated K+ channel in enhanced cell proliferation by ATP in brain endothelial cells. J Biol Chem 281:38430–38439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by BBSRC grant S19517 and Wellcome grant 070139/Z/02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Hladky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millar, I.D., Wang, S., Brown, P.D. et al. Kv1 and Kir2 potassium channels are expressed in rat brain endothelial cells. Pflugers Arch - Eur J Physiol 456, 379–391 (2008). https://doi.org/10.1007/s00424-007-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0377-1

Keywords

Navigation