Skip to main content

Advertisement

Log in

Activation of hEAG1 potassium channels by arachidonic acid

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The depolarisation activated human ether à go-go (hEAG) potassium channels are primarily expressed in neuronal tissue but their appearance in various tumour entities is also indicative of an oncogenic role. Because upregulation of hEAG channels may yield to an enhanced cell proliferation, interventions increasing hEAG1 currents may serve similar purposes. We therefore investigated the effects of polyunsaturated fatty acids on hEAG1 channels. Arachidonic acid (AA) lowered their activation threshold, accelerated the activation kinetics and increased the open probability with a half-maximal concentration of about 4 μM. This effect correlated with the number of double bonds (db) in the fatty acids, increasing from oleic acid (1 db), linolenic acid (3 db), AA (4 db) to eicosapentaenoic acid (5 db). Unlike other voltage-gated K+ channels, hEAG1 channels are not blocked by arachidonic acid. Therefore, in particular at typical resting potentials of tumour cells (−30 mV), AA potently activated hEAG1 channels in a reversible manner. Proliferation and metabolic activity of hEAG1-expressing human melanoma cells increased when cells were exposed to AA concentrations of 5 μM and this effect was suppressed in the presence of the hEAG1 blocker LY97241 suggesting that the proliferative effect of AA is in part mediated by activation of hEAG channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bauer CK, Schwarz JR (2001) Physiology of EAG K+ channels. J Membr Biol 182:1–15

    PubMed  CAS  Google Scholar 

  2. Broughton SJ, Kitamoto T, Greenspan RJ (2004) Excitatory and inhibitory switches for courtship in the brain of Drosophila melanogaster. Curr Biol 14:538–547

    Article  PubMed  CAS  Google Scholar 

  3. Camacho J (2006) Ether à go-go potassium channels and cancer. Cancer Lett 233:1–9

    Article  PubMed  CAS  Google Scholar 

  4. Capdevila J, Gil L, Orellana M, Marnett LJ, Mason JI, Yadagiri P, Falck JR (1988) Inhibitors of cytochrome P-450-dependent arachidonic acid metabolism. Arch Biochem Biophys 261:257–263

    Article  PubMed  CAS  Google Scholar 

  5. Colbert CM, Pan E (1999) Arachidonic acid reciprocally alters the availability of transient and sustained dendritic K+ channels in hippocampal CA1 pyramidal neurons. J Neurosci 19:8163–8171

    PubMed  CAS  Google Scholar 

  6. Denkins Y, Kempf D, Ferniz M, Nileshwar S, Marchetti D (2005) Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. J Lipid Res 46:1278–1284

    Article  PubMed  CAS  Google Scholar 

  7. Denson DD, Wang X, Worrell RT, Eaton DC (2000) Effects of fatty acids on BK channels in GH3 cells. Am J Physiol Cell Physiol 279:C1211–C1219

    PubMed  CAS  Google Scholar 

  8. Farias LM, Ocana DB, Diaz L, Larrea F, Avila-Chavez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernandez-Gallegos E, Camacho-Arrayo I, Duenas-Gonzalez A, Perez-Cardenas E, Pardo LA, Morales A, Taja-Chayeb L, Escamilla J, Sanchez-Pena C, Camacho J (2004) Ether à go-go potassium channels as human cervical cancer markers. Cancer Res 64:6996–7001

    Article  PubMed  CAS  Google Scholar 

  9. Gavrilova-Ruch O, Schönherr K, Gessner G, Schönherr R, Klapperstück T, Wohlrab W, Heinemann SH (2002) Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J Membr Biol 188:137–149

    Article  PubMed  CAS  Google Scholar 

  10. Gessner G, Heinemann SH (2003) Inhibition of hEAG1 and hERG1 potassium channels by clofilium and its tertiary analog LY97241. Br J Pharmacol 138:161–171

    Article  PubMed  CAS  Google Scholar 

  11. Guizy M, Arias C, David M, González T, Valenzuela C (2005) Ω-3 and Ω-6 polyunsaturated fatty acids block HERG channels. Am J Physiol Cell Physiol 289:C1251–C1260

    Article  PubMed  CAS  Google Scholar 

  12. Hamilton KL, Syme CA, Devor DC (2003) Molecular localisation of the inhibitory arachidonic acid binding site to the pore of hIK1. J Biol Chem 278:16690–16697

    Article  PubMed  CAS  Google Scholar 

  13. Hegle AP, Marble DD, Wilson GF (2006) A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci USA 103:2886–2891

    Article  PubMed  CAS  Google Scholar 

  14. Honoré E, Barchanin J, Attali B, Lesage F, Lazdunski M (1994) External blockade of the major cardiac delayed-rectifier K* channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci USA 91:1937–1944

    Article  PubMed  Google Scholar 

  15. Ju M, Wray D (2002) Molecular identification and characterisation of the human eag 2 potassium channel. FEBS Lett 524:204–210

    Article  PubMed  CAS  Google Scholar 

  16. Kim Y, Gnatenco C, Bang H, Kim D (2001) Localization of TREK-2 K+ channel domains that regulate channel kinetics and sensitivity to pressure, fatty acids and pHi. Pflügers Arch 442:952–960

    Article  PubMed  CAS  Google Scholar 

  17. Kogteva GS, Bezuglov VV (1998) Unsaturated fatty acids as endogenous bioregulators. Biochemistry (Moscow) 63:4–12

    CAS  Google Scholar 

  18. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    Article  PubMed  CAS  Google Scholar 

  19. Liu Y, Liu D, Heath L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP, Yu W, Curran ME (2001) Direct activation of an inwardly rectifying potassium channel by arachidonic acid. Mol Pharmacol 59:1061–1068

    PubMed  CAS  Google Scholar 

  20. Macica CM, Yang Y, Lerea K, Hebert SC, Wang W (1998) Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition. Am J Physiol 274:F175–F181

    PubMed  CAS  Google Scholar 

  21. Nie D, Honn KV (2004) Eicosanoid regulation of angiogenesis in tumors. Semin Thromb Hemost 30:119–125

    Article  PubMed  CAS  Google Scholar 

  22. Occhiodoro T, Bernheim L, Liu JH, Bijlenga P, Sinnreich M, Bader CR, Fischer-Lougheed J (1998) Cloning of a human ether-a-go-go potassium channel expressed in myoblasts at the onset of fusion. FEBS Lett 434:177–182

    Article  PubMed  CAS  Google Scholar 

  23. Oliver D, Lien C-C, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304:265–270

    Article  PubMed  CAS  Google Scholar 

  24. Pardo LA, del Camino D, Sánchez A, Alves F, Brüggemann A, Beckh S, Stühmer W (1999) Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547

    Article  PubMed  CAS  Google Scholar 

  25. Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology 19:285–292

    Article  PubMed  CAS  Google Scholar 

  26. Patel AL, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 15:4283–4290

    Article  Google Scholar 

  27. Piomelli D (1996) Arachidonic acid in cell signalling. Springer, Berlin Heidelberg New York, 195 pp

    Google Scholar 

  28. Rogalski SL, Chavkin C (2001) Eicosanoids inhibit the G-protein-gated inwardly rectifying potassium channel (Kir 3) at the Na+/PIP2 gating site. J Biol Chem 276:14855–14860

    Article  PubMed  CAS  Google Scholar 

  29. Saganich MJ, Machado E, Rudy B (2001) Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain. J Neurosci 21:4609–4624

    PubMed  CAS  Google Scholar 

  30. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  PubMed  CAS  Google Scholar 

  31. Schledermann W, Wulfsen I, Schwarz JR, Bauer CK (2001) Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol 532:143–163

    Article  PubMed  CAS  Google Scholar 

  32. Schönherr R (2005) Clinical relevance of ion channels for diagnosis and therapy of cancer. J Membr Biol 205:175–184

    Article  PubMed  Google Scholar 

  33. Schönherr R, Gessner G, Löber K, Heinemann SH (2002) Functional distinction of human EAG1 and EAG2 potassium channels. FEBS Lett 514:204–208

    Article  PubMed  Google Scholar 

  34. Schönherr R, Löber K, Heinemann SH (2000) Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin. EMBO J 19:3263–3271

    Article  PubMed  Google Scholar 

  35. Schönherr R, Mannuzzu LM, Isacoff EY, Heinemann SH (2002) Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility on the EAG K+ channel. Neuron 35:935–949

    Article  PubMed  Google Scholar 

  36. Silverman WR, Tang CY, Mock AF, Huh KB, Papazian DM (2000) Mg2+ modulates voltage-dependent activation in ether-a-go-go potassium channels by binding between transmembrane segments S2 and S3. J Gen Physiol 116:663–678

    Article  PubMed  CAS  Google Scholar 

  37. Snyders DJ, Tamkun MM, Bennet PB (1993) A rapidly activating and slowly inactivation potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol 101:513–543

    Article  PubMed  CAS  Google Scholar 

  38. Stühmer W, Alves F, Hartung F, Zientkowska M, Pardo LA (2006) Potassium channels as tumour markers. FEBS Lett 580:2850–2852

    Article  PubMed  Google Scholar 

  39. Terlau H, Ludwig J, Steffan R, Pongs O, Stühmer W, Heinemann SH (1996) Extracellular Mg2+ regulates activation of rat eag potassium channel. Pflügers Arch 432:301–312

    Article  PubMed  CAS  Google Scholar 

  40. Villarroel A, Schwarz T (1996) Inhibition of the Kv4 (Shal) family of transient K+ currents by arachidonic acid. J Neurosci 16:2522–2531

    PubMed  CAS  Google Scholar 

  41. Wang J, Zhang Y, Wang H, Han H, Nattel S, Yang B, Wang Z (2004) Potential mechanism for the enhancement of HERG K+ channel function by phospholipid metabolites. Br J Pharmacol 141:586–599

    Article  PubMed  CAS  Google Scholar 

  42. Zheng HF, Li XL, Jin ZY, Sun JB, Li ZB, Xu WX (2005) Effects of unsaturated fatty acids on calcium-activated potassium current in gastric myocytes of guinea pigs. World J Gastroenterol 11:672–675

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG (SFB 604, TP A4). We are grateful for technical assistance by S. Arend and A. Rossner and helpful comments regarding proliferation assays by K. Schönherr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan H. Heinemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilova-Ruch, O., Schönherr, R. & Heinemann, S.H. Activation of hEAG1 potassium channels by arachidonic acid. Pflugers Arch - Eur J Physiol 453, 891–903 (2007). https://doi.org/10.1007/s00424-006-0173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0173-3

Keywords

Navigation