Skip to main content
Log in

Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The members of the protein 4.1 family, 4.1R, 4.1G, 4.1N, and 4.1B, are encoded by four genes, all of which undergo complex alternative splicing. It is well established that 4.1R, the prototypical member of the family, serves as an adapter that links the spectrin–actin based cytoskeleton to the plasma membrane in red cells. It is required for mechanical resilience of the membrane, and it ensures the cell surface accumulation of selected membrane proteins. However, the function of 4.1 proteins outside erythrocytes remains under-explored, especially in endocrine tissues. Transcripts of all 4.1 homologs have previously been documented to be abundantly expressed in adrenal gland. In order to begin to decipher the function of 4.1 proteins in adrenal gland, we performed a detailed characterization of the expression pattern of various 4.1 proteins and their cellular localization. We show that 4.1R (~80 and ~135 kDa) splice forms are expressed on the membrane of all cells, while a ~160 kDa 4.1G splice form is distributed in the cytoplasm and the membrane of zona glomerulosa and of medullary cells. Two 4.1N splice forms, ~135 and ~95 kDa, are present in the peri-nuclear region of both zona glomerulosa and medullary cells, while a single ~130 kDa 4.1B splice form, is detected in all layers of adrenal gland in both the cytoplasm and the membrane. The characterization of distinct splice forms of various 4.1 proteins with diverse cellular and sub-cellular localization indicates multiple functions for this family of proteins in endocrine functions of adrenal gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baines AJ (2009) Evolution of spectrin function in cytoskeletal and membrane networks. Biochem Soc Trans 37:796–803

    Article  CAS  PubMed  Google Scholar 

  • Baines AJ, Bennett PM, Carter EW, Terracciano C (2009) Protein 4.1 and the control of ion channels. Blood Cells Mol Dis 42:211–215

    Article  CAS  PubMed  Google Scholar 

  • Binda AV, Kabbani N, Lin R, Levenson R (2002) D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N. Mol Pharmacol 62:507–513

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Conboy J (1987) Molecular cloning and characterization of the gene coding for red cell membrane skeletal protein 4.1. Biorheology 24:673–687

    CAS  PubMed  Google Scholar 

  • Correas I (1991) Characterization of isoforms of protein 4.1 present in the nucleus. Biochem J 279(Pt 2):581–585

    CAS  PubMed  Google Scholar 

  • Discher D, Parra M, Conboy JG, Mohandas N (1993) Mechanochemistry of the alternatively spliced spectrin–actin binding domain in membrane skeletal protein 4.1. J Biol Chem 268:7186–7195

    CAS  PubMed  Google Scholar 

  • Discher DE, Winardi R, Schischmanoff PO, Parra M, Conboy JG, Mohandas N (1995) Mechanochemistry of protein 4.1’s spectrin–actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol 130:897–907

    Article  CAS  PubMed  Google Scholar 

  • Fukatsu K, Bannai H, Zhang S, Nakamura H, Inoue T, Mikoshiba K (2004) Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites. J Biol Chem 279:48976–48982

    Article  CAS  PubMed  Google Scholar 

  • Gascard P, Lee G, Coulombel L, Auffray I, Lum M, Parra M, Conboy JG, Mohandas N, Chasis JA (1998) Characterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation. Blood 92:4404–4414

    CAS  PubMed  Google Scholar 

  • Gimm JA, An X, Nunomura W, Mohandas N (2002) Functional characterization of spectrin–actin-binding domains in 4.1 family of proteins. Biochemistry 41:7275–7282

    Article  CAS  PubMed  Google Scholar 

  • Girault JA, Oguievetskaia K, Carnaud M, Denisenko-Nehrbass N, Goutebroze L (2003) Transmembrane scaffolding proteins in the formation and stability of nodes of Ranvier. Biol Cell 95:447–452

    Article  CAS  PubMed  Google Scholar 

  • Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8:R250

    Article  PubMed  Google Scholar 

  • Kang Q, Wang T, Zhang H, Mohandas N, An X (2009a) A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane. J Cell Sci 122:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Kang Q, Yu Y, Pei X, Hughes R, Heck S, Zhang X, Guo X, Halverson G, Mohandas N, An X (2009b) Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT. Blood 113:6128–6137

    Article  CAS  PubMed  Google Scholar 

  • Krauss SW, Chasis JA, Rogers C, Mohandas N, Krockmalnic G, Penman S (1997) Structural protein 4.1 is located in mammalian centrosomes. Proc Natl Acad Sci USA 94:7297–7302

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Yan H, Othman T, Turner CP, Woolf T, Rivkees SA (2004) Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action. Biochem J 377:51–59

    Article  CAS  PubMed  Google Scholar 

  • Mattagajasingh SN, Huang SC, Hartenstein JS, Benz EJ Jr (2000) Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem 275:30573–30585

    Article  CAS  PubMed  Google Scholar 

  • Parra M, Gascard P, Walensky LD, Snyder SH, Mohandas N, Conboy JG (1998) Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 49:298–306

    Article  CAS  PubMed  Google Scholar 

  • Parra M, Gascard P, Walensky LD, Gimm JA, Blackshaw S, Chan N, Takakuwa Y, Berger T, Lee G, Chasis JA et al (2000) Molecular and functional characterization of protein 4.1B, a novel member of the protein 4.1 family with high level, focal expression in brain. J Biol Chem 275:3247–3255

    Article  CAS  PubMed  Google Scholar 

  • Parra M, Gee S, Chan N, Ryaboy D, Dubchak I, Mohandas N, Gascard PD, Conboy JG (2004) Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitate expression of diverse tissue-specific isoforms. Genomics 84:637–646

    Article  CAS  PubMed  Google Scholar 

  • Ramez M, Blot-Chabaud M, Cluzeaud F, Chanan S, Patterson M, Walensky LD, Marfatia S, Baines AJ, Chasis JA, Conboy JG et al (2003) Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int 63:1321–1337

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  CAS  PubMed  Google Scholar 

  • Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, Mohandas N, An X (2008) Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA 105:8026–8031

    Article  CAS  PubMed  Google Scholar 

  • Shi ZT, Afzal V, Coller B, Patel D, Chasis JA, Parra M, Lee G, Paszty C, Stevens M, Walensky L et al (1999) Protein 4.1R-deficient mice are viable but have erythroid membrane skeleton abnormalities. J Clin Invest 103:331–340

    Article  CAS  PubMed  Google Scholar 

  • Taylor-Harris PM, Keating LA, Maggs AM, Phillips GW, Birks EJ, Franklin RC, Yacoub MH, Baines AJ, Pinder JC (2005) Cardiac muscle cell cytoskeletal protein 4.1: analysis of transcripts and subcellular location–relevance to membrane integrity, microstructure, and possible role in heart failure. Mamm Genome 16:137–151

    Article  CAS  PubMed  Google Scholar 

  • Walensky LD, Gascard P, Fields ME, Blackshaw S, Conboy JG, Mohandas N, Snyder SH (1998) The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1. J Cell Biol 141:143–153

    Article  CAS  PubMed  Google Scholar 

  • Walensky LD, Blackshaw S, Liao D, Watkins CC, Weier HU, Parra M, Huganir RL, Conboy JG, Mohandas N, Snyder SH (1999) A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1. J Neurosci 19:6457–6467

    CAS  PubMed  Google Scholar 

  • Yang S, Guo X, Debnath G, Mohandas N, An X (2009) Protein 4.1R links E-cadherin/beta-catenin complex to the cytoskeleton through its direct interaction with beta-catenin and modulates adherens junction integrity. Biochim Biophys Acta 1788:1458–1465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants DK 32094 and DK 26263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, C., Debnath, G. et al. Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochem Cell Biol 134, 411–420 (2010). https://doi.org/10.1007/s00418-010-0749-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0749-z

Keywords

Navigation