Skip to main content
Log in

Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The potential adverse effects associated with exposure to ionizing radiation from computed tomography (CT) in pediatrics must be characterized in relation to their expected clinical benefits. Additional epidemiological data are, however, still awaited for providing a lifelong overview of potential cancer risks. This paper gives predictions of potential lifetime risks of cancer incidence that would be induced by CT examinations during childhood in French routine practices in pediatrics. Organ doses were estimated from standard radiological protocols in 15 hospitals. Excess risks of leukemia, brain/central nervous system, breast and thyroid cancers were predicted from dose–response models estimated in the Japanese atomic bomb survivors’ dataset and studies of medical exposures. Uncertainty in predictions was quantified using Monte Carlo simulations. This approach predicts that 100,000 skull/brain scans in 5-year-old children would result in eight (90 % uncertainty interval (UI) 1–55) brain/CNS cancers and four (90 % UI 1–14) cases of leukemia and that 100,000 chest scans would lead to 31 (90 % UI 9–101) thyroid cancers, 55 (90 % UI 20–158) breast cancers, and one (90 % UI <0.1–4) leukemia case (all in excess of risks without exposure). Compared to background risks, radiation-induced risks would be low for individuals throughout life, but relative risks would be highest in the first decades of life. Heterogeneity in the radiological protocols across the hospitals implies that 5–10 % of CT examinations would be related to risks 1.4–3.6 times higher than those for the median doses. Overall excess relative risks in exposed populations would be 1–10 % depending on the site of cancer and the duration of follow-up. The results emphasize the potential risks of cancer specifically from standard CT examinations in pediatrics and underline the necessity of optimization of radiological protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams MJ, Dozier A, Shore RE, Lipshultz SE, Schwartz RG, Constine LS, Pearson TA, Stovall M, Winters P, Fisher SG (2010) Breast cancer risk 55 + years after irradiation for an enlarged thymus and its implications for early childhood medical irradiation today. Cancer Epidemiol Biomarkers Prev 19(1):48–58

    Article  Google Scholar 

  • Baysson H, Etard C, Brisse HJ, Bernier MO (2012) Diagnostic radiation exposure in children and cancer risk: current knowledge and perspectives. Arch Pediatr 19(1):64–73

    Article  Google Scholar 

  • Belot A, Grosclaude P, Bossard N, Jougla E, Benhamou E, Delafosse P, Guizard AV, Molinie F, Danzon A, Bara S, Bouvier AM, Tretarre B, Binder-Foucard F, Colonna M, Daubisse L, Hedelin G, Launoy G, Le Stang N, Maynadie M, Monnereau A, Troussard X, Faivre J, Collignon A, Janoray I, Arveux P, Buemi A, Raverdy N, Schvartz C, Bovet M, Cherie-Challine L, Esteve J, Remontet L, Velten M (2008) Cancer incidence and mortality in France over the period 1980–2005. Rev Epidemiol Sante Publique 56(3):159–175

    Article  Google Scholar 

  • Bernier MO, Mezzarobba M, Maupu E, Caer-Lorho S, Brisse HJ, Laurier D, Brunelle F, Chatellier G (2012a) Role of French hospital claims databases from care units in epidemiological studies: the example of the “Cohorte Enfant Scanner” study. Rev Epidemiol Sante Publique 60(5):363–370

    Article  Google Scholar 

  • Bernier MO, Rehel JL, Brisse HJ, Wu-Zhou X, Caer-Lorho S, Jacob S, Chateil JF, Aubert B, Laurier D (2012b) Radiation exposure from CT in early childhood: a French large-scale multicentre study. Br J Radiol 85(1009):53–60

    Article  Google Scholar 

  • Berrington de Gonzalez A, Darby S (2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351

    Article  Google Scholar 

  • Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, Land C (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169(22):2071–2077

    Article  Google Scholar 

  • Berrington de Gonzalez A, Apostoaei JA, Veiga LH, Rajaraman P, Thomas BA, Owen Hoffman F, Gilbert E, Land C (2012) RadRAT: a radiation risk assessment tool for lifetime cancer risk projection. J Radiol Prot 32(3):205–222

    Article  Google Scholar 

  • Boice JD Jr, Preston D, Davis FG, Monson RR (1991) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 125(2):214–222

    Article  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  Google Scholar 

  • Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176(2):289–296

    Article  Google Scholar 

  • Brenner DJ, Shuryak I, Einstein AJ (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261(1):193–198

    Article  Google Scholar 

  • Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II–The design and analysis of cohort studies. IARC Sci Publ 82:1–406

    Google Scholar 

  • Cardis E, Hatch M (2011) The Chernobyl accident-an epidemiological perspective. Clin Oncol 23(4):251–260

    Article  Google Scholar 

  • Cardis E, Howe G, Ron E, Bebeshko V, Bogdanova T, Bouville A, Carr Z, Chumak V, Davis S, Demidchik Y, Drozdovitch V, Gentner N, Gudzenko N, Hatch M, Ivanov V, Jacob P, Kapitonova E, Kenigsberg Y, Kesminiene A, Kopecky KJ, Kryuchkov V, Loos A, Pinchera A, Reiners C, Repacholi M, Shibata Y, Shore RE, Thomas G, Tirmarche M, Yamashita S, Zvonova I (2006) Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot 26(2):127–140

    Article  Google Scholar 

  • Chodick G, Ronckers CM, Shalev V, Ron E (2007) Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children. Isr Med Assoc J 9(8):584–587

    Google Scholar 

  • Etard C, Sinno Tellier S, Aubert B (2010) [Exposure of the French population to ionizing radiation from medical diagnostic examinations in 2007] Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Institut de Veille Sanitaire (InVS). http://www.irsn.fr/FR/Documents/RA2010/IRSN_INVS_Rapport_Expri_032010.pdf. Accessed Jan, 31 2013

  • Etard C, Sinno Tellier S, Empereur-Bissonnet P, Aubert B (2012) French population exposure to ionizing radiation from diagnostic medical procedures in 2007. Health Phys 102(6):670–679

    Google Scholar 

  • Furukawa K, Preston DL, Lonn S, Funamoto S, Yonehara S, Matsuo T, Egawa H, Tokuoka S, Ozasa K, Kasagi F, Kodama K, Mabuchi K (2010) Radiation and smoking effects on lung cancer incidence among atomic bomb survivors. Radiat Res 174(1):72–82

    Article  Google Scholar 

  • Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K (2013) Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer 132(5):1222–1226

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis (second ed). CRC/Chapman & Hall, Boca Raton

    Google Scholar 

  • Hammer GP, Seidenbusch MC, Schneider K, Regulla DF, Zeeb H, Spix C, Blettner M (2009) A cohort study of childhood cancer incidence after postnatal diagnostic X-ray exposure. Radiat Res 171(4):504–512

    Article  Google Scholar 

  • Howe GR, McLaughlin J (1996) Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivors study. Radiat Res 145(6):694–707

    Article  Google Scholar 

  • Hsu WL, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K (2013) The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res 179(3):361–382

    Article  Google Scholar 

  • Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. Am J Roentgenol 188(2):540–546

    Article  Google Scholar 

  • IARC (2012) International agency for research on cancer (IARC). IARC monographs volume 100D—a review of human carcinogens: Radiation. Lyon, France

  • ICRP (2005) Low-dose extrapolation of radiation-related cancer risk. ICRP Publication 99. Ann ICRP 35(4)

  • Karlsson P, Holmberg E, Lundell M, Mattsson A, Holm LE, Wallgren A (1998) Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma. Radiat Res 150(3):357–364

    Article  Google Scholar 

  • Kellerer AM, Nekolla EA, Walsh L (2001) On the conversion of solid cancer excess relative risk into lifetime attributable risk. Radiat Environ Biophys 40(4):249–257

    Article  Google Scholar 

  • Kocher DC, Apostoaei JA, Henshaw RW, Hoffman FO, Schubauer-Berigan MK, Stancescu DO, Thomas BA, Trabalka JR, Gilbert ES, Land CE (2008) Interactive radio epidemiological program (IREP): a web-based tool for estimating probability of causation/assigned share of radiogenic cancers. Health Phys 95(1):119–147

    Article  Google Scholar 

  • Krille L, Jahnen A, Mildenberger P, Schneider K, Weisser G, Zeeb H, Blettner M (2011) Computed tomography in children: multicenter cohort study design for the evaluation of cancer risk. Eur J Epidemiol 26(3):249–250

    Article  Google Scholar 

  • Krille L, Zeeb H, Jahnen A, Mildenberger P, Seidenbusch M, Schneider K, Weisser G, Hammer G, Scholz P, Blettner M (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51(2):103–111

    Article  Google Scholar 

  • Land CE, Tokunaga M, Koyama K, Soda M, Preston DL, Nishimori I, Tokuoka S (2003) Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 160(6):707–717

    Article  Google Scholar 

  • Lechel U, Becker C, Langenfeld-Jager G, Brix G (2009) Dose reduction by automatic exposure control in multi detector computed tomography: comparison between measurement and calculation. Eur Radiol 19(4):1027–1034

    Article  Google Scholar 

  • Linet MS, Kim KP, Rajaraman P (2009) Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol 39(Suppl 1):S4–26

    Article  Google Scholar 

  • Little MP (2001) Comparison of the risks of cancer incidence and mortality following radiation therapy for benign and malignant disease with the cancer risks observed in the Japanese A-bomb survivors. Int J Radiat Biol 77(4):431–464

    Article  Google Scholar 

  • Little MP (2008) Leukaemia following childhood radiation exposure in the Japanese atomic bomb survivors and in medically exposed groups. Radiat Prot Dosimetry 132(2):156–165

    Article  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS: a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J 346:f2360

    Article  Google Scholar 

  • Mattsson A, Ruden BI, Hall P, Wilking N, Rutqvist LE (1993) Radiation-induced breast cancer: long-term follow-up of radiation therapy for benign breast disease. J Natl Cancer Inst 85(20):1679–1685

    Article  Google Scholar 

  • McLean D, Malitz N, Lewis S (2003) Survey of effective dose levels from typical paediatric CT protocols. Australas Radiol 47(2):135–142

    Article  Google Scholar 

  • Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008a) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263

    Article  Google Scholar 

  • Mettler FA, Thomadsen BR, Bhargavan M, Gilley DB, Gray JE, Lipoti JA, McCrohan J, Yoshizumi TT, Mahesh M (2008b) Medical radiation exposure in the U.S. in preliminary results. Health Phys 95(5):502–507

    Article  Google Scholar 

  • NCRP (2012) National council on radiation protection and measurements (NCRP) uncertainties in the estimation of radiation risks and probability of disease causation report No 171. NCRP Bethesda, MD

  • Neglia JP, Robison LL, Stovall M, Liu Y, Packer RJ, Hammond S, Yasui Y, Kasper CE, Mertens AC, Donaldson SS, Meadows AT, Inskip PD (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98(21):1528–1537

    Article  Google Scholar 

  • NIH (2003) Report of the NCI-CDC working group to revise the 1985 NIH radioepidemiological tables. National Institutes of Health (NIH) Publication No. 03-5387. Bethesda, MD

  • NRC (2006) Committee to assess health risks from exposure to low levels of ionizing radiation, national research council (NRC). Health risks from exposure to low levels of ionizing radiation: BEIR VII—Phase 2. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177(3):229–243

    Article  Google Scholar 

  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de Gonzalez A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    Article  Google Scholar 

  • Pettorini BL, Park YS, Caldarelli M, Massimi L, Tamburrini G, Di Rocco C (2008) Radiation-induced brain tumours after central nervous system irradiation in childhood: a review. Childs Nerv Syst 24(7):793–805

    Article  Google Scholar 

  • Phillips CV (2003) Quantifying and reporting uncertainty from systematic errors. Epidemiology 14(4):459–466

    Google Scholar 

  • Preston D, Lubin J, Pierce DA, McConney M (1993) Epicure users guide. Hirosoft, Seattle

    Google Scholar 

  • Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice JD Jr (2002) Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res 158(2):220–235

    Article  Google Scholar 

  • Preston DL, Pierce DA, Shimizu Y, Cullings HM, Fujita S, Funamoto S, Kodama K (2004) Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res 162(4):377–389

    Article  Google Scholar 

  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64

    Article  Google Scholar 

  • Richardson D, Sugiyama H, Nishi N, Sakata R, Shimizu Y, Grant EJ, Soda M, Hsu WL, Suyama A, Kodama K, Kasagi F (2009) Ionizing radiation and leukemia mortality among Japanese atomic bomb survivors, 1950–2000. Radiat Res 172(3):368–382

    Article  Google Scholar 

  • Ron E (2003) Cancer risks from medical radiation. Health Phys 85(1):47–59

    Article  Google Scholar 

  • Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141(3):259–277

    Article  Google Scholar 

  • Ronckers CM, Doody MM, Lonstein JE, Stovall M, Land CE (2008) Multiple diagnostic X-rays for spine deformities and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 17(3):605–613

    Article  Google Scholar 

  • Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I (2005) Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res 163(4):424–432

    Article  Google Scholar 

  • Schulze-Rath R, Hammer GP, Blettner M (2008) Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiat Environ Biophys 47(3):301–312

    Article  Google Scholar 

  • Shore RE, Moseson M, Harley N, Pasternack BS (2003) Tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (Tinea capitis). Health Phys 85(4):404–408

    Article  Google Scholar 

  • Shrimpton PC, Jones DG, Hillier MC (1991) Survey of CT practice in the UK; Part 2: dosimetric aspects. London, UK

  • Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79(948):968–980

    Article  Google Scholar 

  • Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, Berkow RL, Hammond S, Neglia JP, Meadows AT, Sklar CA, Robison LL, Inskip PD (2005) Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet 365(9476):2014–2023

    Article  Google Scholar 

  • Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, Berrington de Gonzalez A, Miglioretti DL (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169(22):2078–2086

    Article  Google Scholar 

  • Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, Greenlee RT, Kruger RL, Hornbrook MC, Roblin D, Solberg LI, Vanneman N, Weinmann S, Williams AE (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. JAMA 307(22):2400–2409

    Article  Google Scholar 

  • Stamm G, Nagel HD (2002) CT-expo–a novel program for dose evaluation in CT. Rofo 174(12):1570–1576

    Article  Google Scholar 

  • Thierry-Chef I, Dabin J, Friberg EG, Hermen J, Istad TS, Jahnen A, Krille L, Lee C, Maccia C, Nordenskjold A, Olerud HM, Rani K, Rehel JL, Simon SL, Struelens L, Kesminiene A (2013) Assessing organ doses from paediatric CT scans–a novel approach for an epidemiology study (the EPI-CT study). Int J Environ Res Public Health 10(2):717–728

    Article  Google Scholar 

  • Tukenova M, Guibout C, Hawkins M, Quiniou E, Mousannif A, Pacquement H, Winter D, Bridier A, Lefkopoulos D, Oberlin O, Diallo I, de Vathaire F (2011) Radiation therapy and late mortality from second sarcoma, carcinoma, and hematological malignancies after a solid cancer in childhood. Int J Radiat Oncol Biol Phys 80(2):339–346

    Article  Google Scholar 

  • UNSCEAR (2006) Report of the United Nations scientific committee on the effects of atomic radiation. UNSCEAR 2006 report. Volume I. Annex A: epidemiological studies of radiation and cancer United Nations, New York

  • UNSCEAR (2008) Report of the United Nations Scientific committee on the effects of atomic radiation. UNSCEAR 2008 report. Volume I. Annex A: medical radiation exposures. United Nations, New York

  • Vaeth M, Pierce DA (1990) Calculating excess lifetime risk in relative risk models. Environ Health Perspect 87:83–94

    Article  Google Scholar 

  • Wakeford R (2013) The risk of childhood leukaemia following exposure to ionising radiation—a review. J Radiol Prot 33(1):1–25

    Article  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to the radiologists working in the participating hospitals (France) who provided us with information about the radiological protocols used in their department: Pr N Boutry (CHU de Lille), Pr F Brunelle (CHU Necker-Enfants-Malades–Paris), Pr JF Chateil (CHU Pellegrin–Bordeaux), Pr E Dion (CHU Louis Mourier – Colombes), Pr H Ducou Le Pointe (CHU Armand Trousseau – Paris), Dr S Franchi (CHU de Bicêtre), Dr MF Galloy (CHU de Nancy), Pr JM Garcier and Dr J Guersen (CHU de Clermont-Ferrand), Pr G Khalifa (CHU Saint-Vincent de Paul – Paris), Dr D Loisel (CHU d’Angers), Pr D Musset (CHU Antoine Béclère – Clamart), Pr D Pariente (CHU de Bicêtre), Pr P Petit (CHU de Marseille), Dr E Schmitt (CHU de Nancy), Pr G Sebag (CHU Robert Debré – Paris), Pr D Sirinelli (CHU Clocheville – Tours), Dr J Vial (CHU de Toulouse). We also thank Olivier Laurent (IRSN, France) very much for helpful discussions on methods at early stages of the work. This report makes use of data obtained from the Radiation Effects Research Foundation (RERF) in Hiroshima, Japan. RERF is a private foundation funded equally by the Japanese Ministry of Health, Labour, and Welfare and the US Department of Energy through the US National Academy of Sciences. The data include information obtained from the Hiroshima City, Hiroshima Prefecture, Nagasaki City, and Nagasaki Prefecture Tumor Registries and the Hiroshima and Nagasaki Tissue Registries. The conclusions in this report are those of the authors and do not necessarily reflect the scientific judgment of RERF or its funding agencies. This work was funded by La Ligue contre le cancer (PRE09/MOB) and the French National Cancer Institute (INCa) (2011-1-PL-SHS-01-IRSN-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Odile Bernier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 238 kb)

Supplementary material 2 (XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Journy, N., Ancelet, S., Rehel, JL. et al. Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach. Radiat Environ Biophys 53, 39–54 (2014). https://doi.org/10.1007/s00411-013-0491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-013-0491-8

Keywords

Navigation