Skip to main content
Log in

Invasive und nichtinvasive Möglichkeiten des haemodynamischen Monitorings

Invasive and non-invasive haemodynamic monitoring

  • TECHNIK UND METHODEN
  • Published:
Intensivmedizin und Notfallmedizin

Abstract

Haemodyanic monitoring is a fundamental element in the examination and treatment of critically ill patients in intensive care units. From the very beginning, physicians in training use different monitoring devices and interpret the derived variables. This review provides an overview of relevant theoretical and technical knowledge on the subject as well as a practical guide for daily use.

Zusammenfassung

Haemodynamisches Monitoring stellt eine „conditione sine qua non“ auf der Intensivstation dar, vom ersten Tag als Assistenzarzt an geht man mit den verschiedenen Monitoringverfahren um. Dieser Artikel beschreibt grundlegende physiologische Variablen und wie sie auf der Intensivstation gemessen werden. Es wird eine Einführung in die wichtigsten technischen und theoretischen Grundlagen sowie die praktische Anwendung der gängigsten hämodynamischen Monitoringverfahren gewährt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bernstein DP (1986) Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med 14:898–901

    PubMed  CAS  Google Scholar 

  2. Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–909

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein DP, Osypka MJ (2003) Apparatus and method for determining an approximation of the stroke volume and the cardiac output of the heart. USA Osypka Medical GmbH (Berlin, DE). Patent Nummer: 6 511 438 (USA) vom April 3, 2001

  4. Cheatham ML, Safcsak K, Block EF, Nelson LD (1999) Preload assessment in patients with an open abdomen. J Trauma 46:16–22

    PubMed  CAS  Google Scholar 

  5. Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81:376–387

    Article  PubMed  CAS  Google Scholar 

  6. Compton F, Hoffmann C, Zidek W, Schmidt S, Schaefer JH (2007) Volumetric hemodynamic parameters to guide fluid removal on hemodialysis in the intensive care unit. Hemodial Int 11:231–237

    Article  PubMed  Google Scholar 

  7. Compton FD, Zukunft B, Hoffmann C, Zidek W, Schaefer JH (2008) Performance of a minimally invasive uncalibrated cardiac output monitoring system (FlotracTM/VigileoTM) in haemodynamically unstable patients. Br J Anaesth

  8. Connors AF Jr, Dawson NV, Shaw PK, Montenegro HD, Nara AR, Martin L (1990) Hemodynamic status in critically ill patients with and without acute heart disease. Chest 98:1200–1206

    Article  PubMed  Google Scholar 

  9. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. Jama 276:889–897

    Article  PubMed  Google Scholar 

  10. Cotter G, Moshkovitz Y, Kaluski E, Cohen AJ, Miller H, Goor D, Vered Z (2004) Accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance. Chest 125:1431–1440

    Article  PubMed  Google Scholar 

  11. De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE (2006) Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt(max). J Cardiothorac Vasc Anesth 20:325–330

    Article  PubMed  Google Scholar 

  12. de Waal EE, de Rossi L, Buhre W (2006) Pulmonalarterienkatheter: Einsatz in Anasthesie und Intensivmedizin. Anaesthesist 55:713–728; quiz 729–730

    Article  PubMed  CAS  Google Scholar 

  13. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea- Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873

    Article  PubMed  Google Scholar 

  14. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  15. Dennis JW, Menawat SS, Sobowale OO, Adams C, Crump JM (1992) Superiority of end-diastolic volume and ejection fraction measurements over wedge pressures in evaluating cardiac function during aortic reconstruction. J Vasc Surg 16:372–377

    Article  PubMed  CAS  Google Scholar 

  16. Diebel L, Wilson RF, Heins J, Larky H, Warsow K, Wilson S (1994) Enddiastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37:950–955

    PubMed  CAS  Google Scholar 

  17. Diebel LN, Myers T, Dulchavsky S (1997) Effects of increasing airway pressure and PEEP on the assessment of cardiac preload. J Trauma 42:585–590; discussion 590–581

    Article  PubMed  CAS  Google Scholar 

  18. Diebel LN, Wilson RF, Tagett MG, Kline RA (1992) End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127:817–821; discussion 821–812

    PubMed  CAS  Google Scholar 

  19. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837

    Article  PubMed  Google Scholar 

  20. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez-Mondejar E, Guerrero-Lopez F, Colmenero M (2007) How important is the measurement of extravascular lung water? Curr Opin Crit Care 13:79–83

    PubMed  Google Scholar 

  22. Friese RS, Shafi S, Gentilello LM (2006) Pulmonary artery catheter use is associated with reduced mortality in severely injured patients. A National Trauma Data Bank analysis of 53 312 patients. Crit Care Med 34:1597–1601

    Article  PubMed  Google Scholar 

  23. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Article  PubMed  Google Scholar 

  24. Groeneveld AB, Verheij J (2006) Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS. Intensive Care Med 32:1315–1321

    Article  PubMed  Google Scholar 

  25. Henning RJ, Wiener F, Valdes S, Weil MH (1979) Measurement of toe temperature for assessing the severity of acute circulatory failure. Surg Gynecol Obstet 149:1–7

    PubMed  CAS  Google Scholar 

  26. Huber W, Ringmaier S, Umgelter A, Holzapfel K, Reindl W, Franzen M, Gaa J, Schmid RM (2007) The role of clinical examination, chest X-ray and central venous pressure in volume assessment in critically ill patients: a comparison with PiCCO-derived data. Crit Care 11:P283

    Article  Google Scholar 

  27. Huber W, Schmid RM (2007) Akute Pankreatitis. Evidenzbasierte Diagnostik und Therapie. Dtsch Arztebl 104:1832–1842

    Google Scholar 

  28. Ishida T, Lee T, Shimabukuro T, Niinami H (2004) Right ventricular enddiastolic volume monitoring after cardiac surgery. Ann Thorac Cardiovasc Surg 10:167–170

    PubMed  Google Scholar 

  29. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1984) Echocardiographic evaluation of ventricles during continuous positive airway pressure breathing. J Appl Physiol 56:619–627

    PubMed  CAS  Google Scholar 

  30. Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39:131–138

    PubMed  CAS  Google Scholar 

  31. Khan S, Trof RJ, Groeneveld AJ (2007) Transpulmonary dilution-derived extravascular lung water as a measure of lung edema. Curr Opin Crit Care 13:303–307

    Article  PubMed  Google Scholar 

  32. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699

    Article  PubMed  Google Scholar 

  33. Kumar A, Anel R, Bunnell E, Zanotti S, Habet K, Haery C, Marshall S, Cheang M, Neumann A, Ali A, Kavinsky C, Parrillo JE (2004) Preloadindependent mechanisms contribute to increased stroke volume following large volume saline infusion in normal volunteers: a prospective interventional study. Crit Care 8:R128–136

    Article  PubMed  Google Scholar 

  34. Leaver SK, Evans TW (2007) Acute respiratory distress syndrome. BMJ 335:389–394

    Article  PubMed  CAS  Google Scholar 

  35. Lemson J, van der Hoeven J (2008) Clinical value of an arterial pressurebased cardiac output measurement device. Crit Care 12:403

    Article  PubMed  Google Scholar 

  36. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18:142–147

    Article  PubMed  CAS  Google Scholar 

  37. Manecke GR (2005) Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices 2:523–527

    Article  PubMed  Google Scholar 

  38. Martin GS, Eaton S, Mealer M, Moss M (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9:R74–82

    Article  PubMed  Google Scholar 

  39. Maruschak GF, Schauble JF (1985) Limitations of thermodilution ejection fraction: degradation of frequency response by catheter mounting of fast-response thermistors. Crit Care Med 13:679–682

    Article  PubMed  CAS  Google Scholar 

  40. McGee WT, Horswell JL, Calderon J, Janvier G, Van Severen T, Van den Berghe G, Kozikowski L (2007) Validation of a continuous, arterial pressure- based cardiac output measurement: a multicenter, prospective clinical trial. Crit Care 11:R105

    Article  PubMed  Google Scholar 

  41. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  42. Michard F, Schachtrupp A, Toens C (2005) Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med 33:1243–1247

    Article  PubMed  Google Scholar 

  43. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ ARDS. Intensive Care Med 33:448–453

    Article  PubMed  Google Scholar 

  44. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–1407

    Article  PubMed  Google Scholar 

  45. Moshkovitz Y, Kaluski E, Milo O, Vered Z, Cotter G (2004) Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. Curr Opin Cardiol 19:229–237

    Article  PubMed  Google Scholar 

  46. Nelson LD (1996) The new pulmonary arterial catheters. Right ventricular ejection fraction and continuous cardiac output. Crit Care Clin 12:795–818

    Article  PubMed  CAS  Google Scholar 

  47. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68

    Article  PubMed  Google Scholar 

  48. Ospina-Tascon GA, Cordioli RL, Vincent JL (2008) What type of monitoring has been shownto improve outcomes in acutely ill patients? Intensive Care Med

  49. Perel A, Maggiorini M, Malbrain M, Teboul JL, Belda J, Fernández Mondéjar E, Kirov MY, Wendon J (2007) Change of therapeutic plan following advanced cardiopulmonary monitoring in critically ill patients: a multicenter study. Crit Care 11:P285

    Article  Google Scholar 

  50. Prasser C, Bele S, Keyl C, Schweiger S, Trabold B, Amann M, Welnhofer J, Wiesenack C (2007) Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration. BMC Anesthesiol 7:9

    Article  PubMed  Google Scholar 

  51. Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory systolic variation test and static preload indicators. Br J Anaesth 95:746–755

    Article  PubMed  CAS  Google Scholar 

  52. Reuter DA (ed) (2007) Erfassen der kardialen Vorlast: Was steht uns zur Verfügung und was gilt es zu bedenken? Uni-Med-Verlag, Bremen London Boston

  53. Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480

    PubMed  Google Scholar 

  54. Reuter DA, Felbinger TW, Moerstedt K, Weis F, Schmidt C, Kilger E, Goetz AE (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16:191–195

    Article  PubMed  Google Scholar 

  55. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  56. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, the Early Goal-Directed Therapy Collaborative Group (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  57. Roch A, Michelet P, D’Journo B, Brousse D, Blayac D, Lambert D, Auffray JP (2005) Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy. Chest 128:927–933

    Article  PubMed  Google Scholar 

  58. Rosenberg P, Yancy CW (2000) Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Curr Opin Cardiol 15:151–155

    Article  PubMed  CAS  Google Scholar 

  59. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086

    Article  PubMed  Google Scholar 

  60. Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier- Hellmann A (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  PubMed  CAS  Google Scholar 

  61. Schmidt S, Westhoff TH, Hofmann C, Schaefer JH, Zidek W, Compton F, van der Giet M (2007) Effect of the venous catheter site on transpulmonary thermodilution measurement variables. Crit Care Med 35:783–786

    Article  PubMed  Google Scholar 

  62. Sharman JE, Qasem AM, Hanekom L, Gill DS, Lim R, Marwick TH (2007) Radial pressure waveform dP/dtmax is a poor indicator of left ventricular systolic function. Eur J Clin Invest 37:276–281

    Article  PubMed  CAS  Google Scholar 

  63. Sharman JE, Qasem AM, Marwick TH (2007) Author reply. European Journal of Clinical Investigation 37:1004–1005

    Article  Google Scholar 

  64. Shoemaker WC, Wo CC, Yu S, Farjam F, Thangathurai D (2000) Invasive and noninvasive haemodynamic monitoring of acutely ill sepsis and septic shock patients in the emergency department. Eur J Emerg Med 7:169–175

    PubMed  CAS  Google Scholar 

  65. Siniscalchi A, Pavesi M, Piraccini E, De Pietri L, Braglia V, Di Benedetto F, Lauro A, Spedicato S, Dante A, Pinna AD, Faenza S (2005) Right ventricular end-diastolic volume index as a predictor of preload status in patients with low right ventricular ejection fraction during orthotopic liver transplantation. Transplant Proc 37:2541–2543

    Article  PubMed  CAS  Google Scholar 

  66. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloontipped catheter. N Engl J Med 283:447–451

    PubMed  CAS  Google Scholar 

  67. Szold A, Pizov R, Segal E, Perel A (1989) The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med 15:368–371

    Article  PubMed  CAS  Google Scholar 

  68. Tartiere JM, Cohen Solal A (2007) Radial pressure waveform dP/dtmax and left ventricular systolic function. Eur J Clin Invest 37:1003; author reply 1004–1005

    Article  PubMed  Google Scholar 

  69. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739

    PubMed  Google Scholar 

  70. Vincent JL, Moraine JJ, van der Linden P (1988) Toe temperature versus transcutaneous oxygen tension monitoring during acute circulatory failure. Intensive Care Med 14:64–68

    Article  PubMed  CAS  Google Scholar 

  71. Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. The Lancet 369:1553–1564

    Article  Google Scholar 

  72. Zeravik J, Borg U, Pfeiffer UJ (1990) Efficacy of pressure support ventilation dependent on extravascular lung water. Chest 97:1412–1419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Huber.

Additional information

“A fool with a tool is still a fool” (Anonymus)

Serie:

Neue Technologien in der Intensivmedizin

Herausgegeben von J. Langgartner (Regensburg) und R.M. Schmid (München)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, W., Rockmann, F. Invasive und nichtinvasive Möglichkeiten des haemodynamischen Monitorings. Intensivmed 45, 337–359 (2008). https://doi.org/10.1007/s00390-008-0894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-008-0894-y

Key words

Schlüsselwörter

Navigation