Skip to main content
Log in

Oxalate balance in fat sand rats feeding on high and low calcium diets

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Oxalate reduces calcium availability of food because it chelates calcium, forming the sparingly soluble salt calcium-oxalate. Nevertheless, fat sand rats (Psammomys obesus; Gerbillinae) feed exclusively on plants containing much oxalate. We measured the effects of calcium intake on oxalate balance by comparing oxalate intake and excretion in wild fat sand rats feeding on their natural, oxalate-rich, calcium-poor diet with commercially-bred fat sand rats feeding on an artificial, calcium-rich, oxalate-poor diet of rodent pellets. We also tested for the presence of the oxalate degrading bacterium Oxalobacter sp. in the faeces of both groups. Fat sand rats feeding on saltbush ingested significantly more oxalate than fat sand rats feeding on pellets (P < 0.001) and excreted significantly more oxalate in urine and faeces (P < 0.01 for both). However the fraction of oxalate recovered in excreta [(oxalate excreted in urine + oxalate excreted in faeces)/oxalate ingested] was significantly higher in pellet-fed fat sand rats (61%) than saltbush-fed fat sand rats (27%). We found O. sp. in the faeces of both groups indicating that fat sand rats harbor oxalate degrading bacteria, and these are able, to some extent, to degrade oxalate in its insoluble form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes Gen-Nov, Sp-Nov—Oxalate-degrading anaerobes that inhabit the gastrointestinal-tract. Arch Microbiol 141:1–7

    Article  PubMed  CAS  Google Scholar 

  • Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73

    Article  PubMed  CAS  Google Scholar 

  • Beuchat CA (1996) Structure and concentrating ability of the mammalian kidney: Correlations with habitat. Am J Physiol-Regulat Integr Compar Physiol 40:R157–R179

    Google Scholar 

  • Daly M, Daly S (1973) On the feeding ecology of Psammomys obesus (Rodentia, Gerbillidae) in the Wadi Saoura, Algeria. Mammalia 37:545–561

    Article  Google Scholar 

  • Daniel SL, Hartman PA, Allison MJ (1987) Intestinal Colonization of Laboratory Rats with Oxalobacter formigenes. Appl Environ Microbiol 53:2767–2770

    PubMed  CAS  Google Scholar 

  • De Lorenzi D, Bernardini M, Pumarola M (2005) Primary hyperoxaluria (l-glyceric aciduria) in a cat. Journal of Feline Medicine and Surgery 7:357–361

    Article  PubMed  Google Scholar 

  • Degen AA, Kam M, Jurgrau D (1988) Energy-Requirements of Fat Sand Rats (Psammomys-Obesus) and Their Efficiency of Utilization of the Saltbush Antriplex halimus for Maintenance. J Zool 215:443–452

    Article  Google Scholar 

  • Degen AA, Kam R, Khokhlova IS, Zeevi K (2000) Fiber digestion and energy utilization of fat sand rats (Psammomys obesus) consuming the chenopod Anabasis articulata. Physiol Biochem Zool 73:574–580

    Article  PubMed  CAS  Google Scholar 

  • Ellern SJ, Samish YB, Lachover D (1974) Salt and oxalic acid content of leaves of the saltbush Atriplex halimus in the northern Negev. J Range Manage 27:267–271

    Article  CAS  Google Scholar 

  • Franceschi VR, Loewus FA (1995) Oxalate biosynthesis and function in plants and fungi. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, pp 113–130

    Google Scholar 

  • Justice KE (1985) Oxalate Digestibility In Neotoma albigula And Neotoma mexicana. Oecologia 67:231–234

    Article  Google Scholar 

  • Kam M, Degen AA (1988) Water, Electrolyte and Nitrogen Balances of Fat Sand Rats (Psammomys obesus) When Consuming the Saltbush Atriplex halimus. J Zool 215:453–462

    Google Scholar 

  • Knoll T, Steidler A, Trojan L, Sagi S, Schaaf A, Yard B, Michel MS, Alken P (2004) The influence of oxalate on renal epithelial and interstitial cells. Urol Res 32:304–309

    Article  PubMed  CAS  Google Scholar 

  • Kolthoff I, Sandell E, Meehan E, Bruckenstein S (1969) Quantitative chemical analysis. Collier-Macmillan, London

    Google Scholar 

  • Korine C, Vatnick I, van Tets IG, Pinshow B (2003) New observations on urine contents in water-deprived Negev Desert rodents. Can J Zool Rev Can Zool 81:941–945

    Article  Google Scholar 

  • Marangella M, Vitale C, Petrarulo M (1996) Primary and enteric hyperoxaluria: Two non-renal causes of nephrolithiasis. Intal J Miner Electrolyte Metab 10:123–129

    Google Scholar 

  • Mendelssohn H, Yom-Tov Y (1999) Fauna Paleaestina: Mammalia of Israel. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  • Mittal RD, Kumar R, Bid HK, Mittal B (2005) Effects of antibiotics on Oxalobacter formigenes colonization of human gastrointestinal tract. J Endourology 19:102–106

    Article  CAS  Google Scholar 

  • Noonan SC, Savage GP (1999) Oxalate content of food and its effect on humans. Asia Pac J Clin Nutr 8:64–74

    Article  CAS  Google Scholar 

  • O’Brien RG (1979) A general ANOVA method for robust tests of additive models for variances. J Am Stat Assoc 74:877–880

    Article  Google Scholar 

  • Ouali S, Bensalem M (1996) Anatomical and structural studies of two desert rodent kidneys: Gerbillus gerbillus and Psammomys obesus. Bull Soc Zool FR Evol Zool 121:103–106

    Google Scholar 

  • Palgi N, Vatnick I, Pinshow B (2005) Oxalate, calcium and ash intake and excretion balances in fat sand rats (Psammomys obesus) feeding on two different diets. Comp Biochem Physiol A Mol Integr Physiol 141:48–53

    Article  PubMed  CAS  Google Scholar 

  • Petrarulo M, Vitale C, Facchini P, Marangella M (1998) Biochemical approach to diagnosis and differentiation of primary hyperoxalurias: an update. J Nephrol 11:23–28

    Article  PubMed  Google Scholar 

  • Schmidt-Nielsen B, O’Dell R (1961) Structure and concentrating mechanism in the mammalian kidney. Am J Physiol 200:1119–1124

    PubMed  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1967) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Shirley EK, Schmidt-Nielsen K (1967) Oxalate metabolism in the pack rat, sand rat, hamster, and white rat. J Nutr 91:496–502

    PubMed  CAS  Google Scholar 

  • Sidhu H, Enatska L, Ogden S, Williams WN, Allison MJ, Peck AB (1997) Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reaction-based detection system. Mol Diagn 2:89–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Regina Goldin-Tzirkin, Ilana Dolev and Ahuva Vonshak for technical assistance. We thank two anonymous referees whose comments helped to improve this paper. This research was partly supported by a Sigma Xi grant-in-aid-of-research and by a student support grant from the Mitrani Department of Desert Ecology (MDDE), both to NP. This is publication 598 of the MDDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niv Palgi.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palgi, N., Ronen, Z. & Pinshow, B. Oxalate balance in fat sand rats feeding on high and low calcium diets. J Comp Physiol B 178, 617–622 (2008). https://doi.org/10.1007/s00360-008-0252-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0252-1

Keywords

Navigation