Skip to main content
Log in

Avoidance conditioning in bamboo sharks (Chiloscyllium griseum and C. punctatum): behavioral and neuroanatomical aspects

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Animals face different threats; to survive, they have to anticipate how to react or how to avoid these. It has already been shown in teleosts that selected regions in the telencephalon, i.e., the medial pallium, are involved in avoidance learning strategies. No such study exists for any chondrichthyan. In nature, an avoidance reaction may vary, ranging from a ‘freeze’ reaction to a startling response and quick escape. This study investigated whether elasmobranchs (Chiloscyllium griseum and C. punctatum) can be conditioned in an aversive classical conditioning paradigm. Upon successful conditioning, the dorsal, medial and lateral pallium were removed (group 1) and performance tested again. In a second group, the same operation was performed prior to training. While conditioning was successful in individuals of both groups, no escape responses were observed. Post-operative performance was assessed and compared between individual and groups to reveal if the neural substrates governing avoidance behavior or tasks learned in a classical conditioning paradigm are located within the telencephalon, as has been shown for teleosts such as goldfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agranoff BW, Davis RE, Brink JJ (1965) Memory fixation in the goldfish. Proc Natl Acad Sci USA 54:788–793

    Article  PubMed  CAS  Google Scholar 

  • Agranoff BW, Davis RE, Brink JJ (1966) Chemical studies on memory fixation in goldfish. Brain Res 1:303–309

    Article  PubMed  CAS  Google Scholar 

  • Akirav I, Maroun M (2007) The role of the medial prefrontal cortex–amygdala circuit in stress effects on the extinction of fear. Neural Plast 2007:1–11

    Article  Google Scholar 

  • Aronson LR, Herberman R (1960) Persistence of a conditioned response in the cichlid fish, Tilapia macrocephala, after forebrain and cerebellar ablations. Anat Rec 138:332

    Google Scholar 

  • Behrend ER, Bitterman ME (1963) Sidman avoidance in the fish. J Exp Anal Behav 6:47–52

    Article  PubMed  CAS  Google Scholar 

  • Bindra D, Anchel H (1963) Immobility as an avoidance response, and its disruption by drugs. J Exp Anal Behav 6:213–218

    Article  PubMed  CAS  Google Scholar 

  • Bolles R, Popp R (1964) ###Parameters affecting the acquisition of Sidman avoidance1. J Exp Anal Behav 7:315–321

    Article  PubMed  CAS  Google Scholar 

  • Bovet D, Bovet-Nitti F, Oliverio A (1968) Memory and consolidation mechanisms in avoidance learning of inbred mice. Brain Res 10:168–182

    Article  PubMed  CAS  Google Scholar 

  • Bradford MR (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not? Brain Behav Evol 46:259–274

    Article  Google Scholar 

  • Broglio C, Gómez A, Durán E, Ocaña FM, Jiménez-Moya F, Rodríguez F, Salas C (2005) Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bull 66:277–281

    Article  PubMed  CAS  Google Scholar 

  • Carpenter RE, Summers CH (2009) Learning strategies during fear conditioning. Neurobiol Learn Mem 91:415–423

    Article  PubMed  Google Scholar 

  • Compagno LJV, Dando M, Fowler S (2005) A field guide to the sharks of the world. Collins, London, pp 65–326

  • Chandroo K, Duncan IJ, Moccia R (2004) Can fish suffer?: Perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci 86:225–250

    Article  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  PubMed  CAS  Google Scholar 

  • Dunlop R, Millsopp S, Laming P (2006) Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Appl Anim Behav Sci 97:255–271

    Article  Google Scholar 

  • Ebbesson SO (1972) New insights into the organization of the shark brain. Comp Biochem Physiol 42:121–129

    Article  CAS  Google Scholar 

  • Ferrari EAM, Faleiros L, Cerutti SM, Oliveira AM (1999) The functional value of sound and exploratory behaviour in detelencephalated pigeons. Behav Brain Res 101:93–103

    Article  PubMed  CAS  Google Scholar 

  • Ferreira TL, Moreira KM, Ikeda DC et al (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17–24

    Article  PubMed  CAS  Google Scholar 

  • Flood NC, Overmier JB, Savage GE (1976) Teleost telencephalon and learning: an interpretive review of data and hypotheses. Physiol Behav 16:783–788

    Article  PubMed  CAS  Google Scholar 

  • Freund G, Walker DW (1971) The effect of aging on acquisition and retention of shuttle box avoidance in mice. Life Sci 10:1343–1349

    Article  CAS  Google Scholar 

  • Gamaro GD, Michalowski MB, Catelli DH et al (1999) Effect of repeated restraint stress on memory in different tasks. Braz J Med Biol Res 32:341–347

    Article  PubMed  CAS  Google Scholar 

  • Graeber RC, Ebbesson SO (1972) Visual discrimination learning in normal and tectal-ablated nurse sharks (Ginglymostoma cirratum). Comp Biochem Physiol 42:131–139

    Article  CAS  Google Scholar 

  • Graeber RC, Ebbesson SO, Jane JA (1973) Visual discrimination in sharks without optic tectum. Science 180:413–415

    Article  PubMed  CAS  Google Scholar 

  • Hofmann MH (2001) The role of the fish telencephalon in sensory information processing. In: Kapoor BG, Hara TJ (eds) Sensory biology of jawed fishes: new insights. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 255–274

    Google Scholar 

  • Horner JL, Longo N, Bitterman ME (1961) A shuttle box for fish and a control circuit of general applicability. Am J Psychol 74:114–120

    Article  PubMed  CAS  Google Scholar 

  • Hunt HF, Brady JV (1951) Some effects of electro-convulsive shock on a conditioned emotional response (“anxiety”). J Comp Physiol 44:88–98

    CAS  Google Scholar 

  • Jackson RL, Alexander J, Maier SF (1980) Learned helplessness, inactivity, and associative deficits: effects of inescapable shock on response choice escape learning. J Exp Psychol Anim Behav Proc 6:1–20

    Article  CAS  Google Scholar 

  • Kalmijn AJ (1988) Detection of weak electric fields. In: Atema J, Fay RR, Popper RN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 151–186

    Chapter  Google Scholar 

  • Kaplan BYH, Aronson LR (1967) Effect of forebrain ablation on the performance of a conditioned avoidance response in the teleost fish, Tilapia H. macrocephala. Anim Behav 15:438–448

    Article  PubMed  CAS  Google Scholar 

  • Kelly JC, Nelson DR (1975) Hearing thresholds of the horn shark, Heterodontus francisci. J Acoust Soc Am 58:905–909

    Article  PubMed  CAS  Google Scholar 

  • Maren S (2001) Neurobiology of pavlovian fear conditioning. Annu Rev Neurosci 224:897–931

    Article  Google Scholar 

  • Maren S, Fanselow MS (1997) Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiol Learn Mem 67:142–149

    Article  PubMed  CAS  Google Scholar 

  • Maren S, Holt WG (2000) The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 110:97–108

    Article  PubMed  CAS  Google Scholar 

  • Maren S, Holt WG (2004) Hippocampus and Pavlovian fear conditioning in rats: muscimol infusions into the ventral, but not dorsal, hippocampus impair the acquisition of conditional freezing to an auditory conditional stimulus. Behav Neurosci 118:97–110

    Article  PubMed  Google Scholar 

  • Martí-Nicolovius M, Portell-Cortés I, Morgado-Bernal I (1988) Improvement of shuttle-box avoidance following post-training treatment in paradoxical sleep deprivation platforms in rats. Physiol Behav 43:93–98

    Article  PubMed  Google Scholar 

  • Mineka S (1979) The role of fear in theories of avoidance learning, flooding, and extinction. Psychol Bull 86:985–1010

    Article  Google Scholar 

  • Morgan MA, Romanski LM, LeDoux JE (1993) Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163:109–113

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR (1967) Hearing thresholds, frequency discrimination, and acoustic orientation in the lemon shark, Negaprion brevirostris (POEY). Bull Mar Sci 17:714–768

    Google Scholar 

  • Nieuwenhuys R (2009) The forebrain of actinopterygians revisited. Brain Behav Evol 73:229–252

    Article  PubMed  Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Annu Rev Neurosci 4:301–350

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (2008) Forebrain evolution in bony fishes. Brain Res Bull 75:191–205

    Article  PubMed  Google Scholar 

  • O’Connell CP, Abel DC, Gruber SH et al (2011) Response of juvenile lemon sharks, Negaprion brevirostris, to a magnetic barrier simulating a beach net. Ocean Coast Manage 54:225–230

    Article  Google Scholar 

  • Otto T, Cousens G, Rajewski K (1997) Odor-guided fear conditioning in rats: 1. Acquisition, retention, and latent inhibition. Behav Neurosci 111:1257–1264

    Article  PubMed  CAS  Google Scholar 

  • Otto T, Cousens G, Herzog C (2000) Behavioral and neuropsychological foundations of olfactory fear conditioning. Behav Brain Res 110:119–128

    Article  PubMed  CAS  Google Scholar 

  • Overmier JB, Papini MR (1986) Factors modulating the effects of teleost telencephalon ablation on retention, relearning, and extinction of instrumental avoidance behavior. Behav Neurosci 100:190–199

    Article  PubMed  CAS  Google Scholar 

  • Overmier JB, Starkman N (1974) Transfer of control of avoidance behavior in normal and telencephalon ablated goldfish (Carassius auratus). Physiol Behav 12:605–608

    Article  PubMed  CAS  Google Scholar 

  • Owen EH, Logue SF, Rasmussen DL, Wehner JM (1997) Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 80:1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Pavlov IP (1928) Lectures on conditioned reflexes: twenty five years of objective study of the higher nervous activity (behaviour) of animals, pp 103–204

  • Portavella M, Vargas JP (2005) Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci 21:2800–2806

    Article  PubMed  Google Scholar 

  • Portavella M, Depaulis A, Vergnes M (1993) 22–28 kHz ultrasonic vocalizations associated with defensive reactions in male rats do not result from fear or aversion. Psychopharmacology 111:190–194

    Article  PubMed  CAS  Google Scholar 

  • Portavella M, Vargas JP, Torres B, Salas C (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57:397–399

    Article  PubMed  CAS  Google Scholar 

  • Portavella M, Salas C, Vargas JP, Papini MR (2003) Involvement of the telencephalon in spaced-trial avoidance learning in the goldfish (Carassius auratus). Physiol Behav 80:49–56

    Article  PubMed  CAS  Google Scholar 

  • Portavella M, Torres B, Salas C (2004a) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Portavella M, Torres B, Salas C, Papini MR (2004b) Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362:75–78

    Article  PubMed  CAS  Google Scholar 

  • Richter-Levin G (2004) The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist 10:31–39

    Article  PubMed  Google Scholar 

  • Rodríguez F, López JC, Vargas JP, Gómez Y et al (2002) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894–2903

    PubMed  Google Scholar 

  • Rodríguez F, Durán E, Gómez A et al (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66:365–370

    Article  PubMed  Google Scholar 

  • Rooney DJ, Laming PR (1988) Effects of telencephalic ablation on habituation of arousal responses, within and between daily training sessions in goldfish. Behav Neurol Biol 49:83–96

    Article  CAS  Google Scholar 

  • Sagvolden T (1975) Acquisition of two-way active avoidance following septal lesions in the rat: effect of intensity of discontinuous shock. Behav Biol 14:59–74

    Article  PubMed  CAS  Google Scholar 

  • Salas C, Broglio C, Durán E et al (2006) Neuropsychology of learning and memory in teleost fish. Zebrafish 3:157–171

    Article  PubMed  Google Scholar 

  • Sanders MJ, Wiltgen BJ, Fanselow MS (2003) The place of the hippocampus in fear conditioning. Eur J Pharmacol 463:217–223

    Article  PubMed  CAS  Google Scholar 

  • Scobie S (1970) The response–shock–shock–shock interval and unsignalled avoidance in goldfish. J Exp Anal Behav 2:219–224

    Article  Google Scholar 

  • Seligman MEP (1972) Learned helplessness. Annu Rev Med 23:407–412

    Article  PubMed  CAS  Google Scholar 

  • Seligman MEP, Maier SF, Geer JH (1968) Alleviation of learned helplessness in the dog. J Abnorm Psychol 73:256–262

    Article  PubMed  CAS  Google Scholar 

  • Shashoua VE, Hesse GW (1989) Classical conditioning leads to changes in extracellular concentrations of ependymin in goldfish brain. Brain Res 484:333–339

    Article  PubMed  CAS  Google Scholar 

  • Springer AD, Schoel WM, Klinger PD, Agranoff BW (1975) Anterograde and retrograde effects of electroconvulsive shock and of puromycin on memory formation in the goldfish. Behav Biol 13:467–481

    Article  PubMed  CAS  Google Scholar 

  • Squire L (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177

    Article  PubMed  Google Scholar 

  • Thorndike EL (1898) Animal intelligence: an experimental study of the associative processes in animals. Psychol Rev Monogr Suppl 2:1–109

    Google Scholar 

  • Tricas TC, New JG (1998) Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields. J Comp Physiol A 182:89–101

    Article  PubMed  CAS  Google Scholar 

  • Vargas JP, López JC, Portavella M (2009) What are the functions of fish brain pallium? Brain Res Bull 79:436–440

    Article  PubMed  Google Scholar 

  • Wilensky AE, Schafe GE, LeDoux JE (1999) Functional inactivation of the amygdala before but not after auditory fear conditioning prevents memory formation. J Neurosci 19:1–5

    Google Scholar 

  • Yoshida M, Okamura I, Uematsu K (2004) Involvement of the cerebellum in classical fear conditioning in goldfish. Behav Brain Res 153:143–148

    Article  PubMed  Google Scholar 

  • Yue S, Moccia RD, Duncan IJH (2004) Investigating fear in domestic rainbow trout, (Oncorhynchus mykiss), using an avoidance learning task. Appl Anim Behav Sci 87:343–354

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank M. Hofmann for technical support and helpful comments on the experimental setup. The research reported herein was performed under the guidelines established by the current German animal protection law (Landesamt für Natur, Umwelt und Verbraucherschutz NRW, 8.87-50.10.37.09.198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Schluessel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarze, S., Bleckmann, H. & Schluessel, V. Avoidance conditioning in bamboo sharks (Chiloscyllium griseum and C. punctatum): behavioral and neuroanatomical aspects. J Comp Physiol A 199, 843–856 (2013). https://doi.org/10.1007/s00359-013-0847-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0847-1

Keywords

Navigation