Skip to main content
Log in

Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Background noise evokes a similar suite of adaptations in the acoustic structure of communication calls across a diverse range of vertebrates. Echolocating bats may have evolved specialized vocal strategies for echolocating in noise, but also seem to exhibit generic vertebrate responses such as the ubiquitous Lombard response. We wondered how bats balance generic and echolocation-specific vocal responses to noise. To address this question, we first characterized the vocal responses of flying free-tailed bats (Tadarida brasiliensis) to broadband noises varying in amplitude. Secondly, we measured the bats’ responses to band-limited noises that varied in the extent of overlap with their echolocation pulse bandwidth. We hypothesized that the bats’ generic responses to noise would be graded proportionally with noise amplitude, total bandwidth and frequency content, and consequently that more selective responses to band-limited noise such as the jamming avoidance response could be explained by a linear decomposition of the response to broadband noise. Instead, the results showed that both the nature and the magnitude of the vocal responses varied with the acoustic structure of the outgoing pulse as well as non-linearly with noise parameters. We conclude that free-tailed bats utilize separate generic and specialized vocal responses to noise in a context-dependent fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

JAR:

Jamming avoidance response

FM:

Frequency-modulated

CF:

Constant-frequency

F start :

Start frequency of the pulse

F end :

End frequency of the pulse

F peak :

Frequency of the part of the pulse with greatest amplitude

References

  • Bates ME, Stamper SA, Simmons JA (2008) Jamming avoidance response of big brown bats in target detection. J Exp Biol 211:106–113

    Article  PubMed  Google Scholar 

  • Brumm H (2006) Signalling through acoustic windows: nightingales avoid interspecific competition by short-term adjustment of song timing. J Comp Physiol A 192:1279–1285

    Article  Google Scholar 

  • Brumm H, Slabbekoom H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Article  Google Scholar 

  • Brumm H, Todt D (2002) Noise-dependent song amplitude regulation in a territorial songbird. Anim Behav 63:891–897

    Article  Google Scholar 

  • Brumm H, Voss K, Köllmer I, Todt D (2004) Acoustic communication in noise: regulation of call characteristics in a New World monkey. J Exp Biol 207:443–448

    Article  PubMed  Google Scholar 

  • Corne S, Bshouty Z (2005) Basic principles of control of breathing. Respir Care Clin N Am 11:147–172

    Article  PubMed  Google Scholar 

  • Cynx J, Von Rad U (2001) Immediate and transitory effects of delayed auditory feedback on bird song production. Anim Behav 62:305–312

    Article  Google Scholar 

  • Dabelsteen T, McGregor PK, Lmpe HM, Langmore NE, Holland J (1988) Quiet song in birds: an overlooked phenomenon. Bioacoustics 9:89–105

    Google Scholar 

  • Egnor SE, Hauser MD (2006) Noise-induced vocal modulation in cotton-top tamarins (Saguinus oedipus). Am J Primatol 68:1183–1190

    Article  PubMed  Google Scholar 

  • Egnor SE, Wickelgren JG, Hauser MD (2007) Tracking silence: adjusting vocal production to avoid acoustic interference. J Comp Physiol A 193:477–483

    Article  Google Scholar 

  • Foote AD, Osborne RW, Hoelzel AR (2004) Whale-call response to masking boat noise. Nature 428:910

    Article  PubMed  CAS  Google Scholar 

  • Gillam EH, McCracken GF (2007) Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Anim Behav 74:277–286

    Article  Google Scholar 

  • Gillam EH, Ulanovsky N, McCracken GF (2007) Rapid jamming avoidance in biosonar. Proc Biol Sci 274:651–660

    Article  PubMed  Google Scholar 

  • Habersetzer J (1981) Adaptive echolocation sounds in the bat Rhinopoma hardwickei, a field study. J Comp Physiol A 144:559–566

    Article  Google Scholar 

  • Hiryu S, Hagino T, Riquimaroux H, Watanabe Y (2007) Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. J Acoust Soc Am 121:1749–1757

    Article  PubMed  Google Scholar 

  • Holt MM, Noren DP (2009) Speaking up: Killer whales (Orcinus orca) increase their call amplitude in response to vessel noise. J Acoust Soc Am 125:27–32

    Article  Google Scholar 

  • Ibanez C, Juste J, Lopez-Wilchis R, Nunez-Garduno A (2004) Habitat variation and jamming avoidance in echolocation calls of the sac-winged bat (Balantiopteryx Plicata). J Mammal 85:38–42

    Article  Google Scholar 

  • Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202:3359–3367

    PubMed  CAS  Google Scholar 

  • Jurgens U (2009) The neural control of vocalization in mammals: a review. J Voice 23:1–10

    Article  PubMed  CAS  Google Scholar 

  • Jürgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258

    Article  PubMed  Google Scholar 

  • Jurgens U, Hage SR (2007) On the role of the reticular formation in vocal pattern generation. Behav Brain Res 182:308–314

    Article  PubMed  Google Scholar 

  • Kobler JB, Wilson BS, Henson OW Jr, Bishop AL (1985) Echo intensity compensation by echolocating bats. Hear Res 20:99–108

    Article  PubMed  CAS  Google Scholar 

  • Lane H, Tranel B (1971) The Lombard sign and the role of hearing in speech. J Speech Hearing Sci 14:677–709

    Google Scholar 

  • Leonard ML, Horn AG (2005) Ambient noise and the design of begging signals. Proc R Soc B 272:651–656

    Article  PubMed  Google Scholar 

  • Lombard E (1911) Le signe de l’élévation de la voix. Ann Mal Oreille Larynx 37:101–119

    Google Scholar 

  • Lopez PT, Narins PM, Lewis ER, Moore SW (1988) Acoustically induced call modification in the white-lipped frog, Leptodactylus albilabris. Anim Behav 36:1295–1308

    Article  Google Scholar 

  • Loren CA, Colcord RD, Rastatter MP (1986) Effects of auditory masking by white noise on variability of fundamental frequency during highly similar productions of spontaneous speech. Percept Mot Skills 63:1203–1206

    PubMed  CAS  Google Scholar 

  • MacLarnon AM, Hewitt GP (1999) The evolution of human speech: the role of enhanced breathing control. Am J Phys Anthropol 109:341–363

    Article  PubMed  CAS  Google Scholar 

  • Manabe K, Sadr EI, Dooling RJ (1998) Control of vocal intensity in budgerigars (Melopsittacus undulatus): differential reinforcement of vocal intensity and the Lombard effect. J Acoust Soc Am 103:1190–1198

    Article  PubMed  CAS  Google Scholar 

  • Nelson B (2000) Avian dependence on sound pressure level as an auditory distance cue. Anim Behav 59:57–67

    Article  PubMed  Google Scholar 

  • Nonaka S, Takahashi R, Enomoto K, Katada A, Unno T (1997) Lombard reflex during PAG-induced vocalization in decerebrate cats. Neurosci Res 29:283–289

    Article  PubMed  CAS  Google Scholar 

  • Penna M, Pottstock H, Velasquez N (2005) Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Anim Behav 70:639–651

    Article  Google Scholar 

  • Picheny MA, Durlach NI, Braida LD (1986) Speaking clearly for the hard of hearing. II: acoustic characteristics of clear and conversational speech. J Speech Hearing Sci 29:434–446

    CAS  Google Scholar 

  • Pollak GK, Marsh DS, Bodenhamer R, Souther A (1978) A single-unit analysis of inferior colliculus in unanesthetized bats: response patterns and spike-count functions generated by constant-frequency and frequency-modulated sounds. J Neurophysiol 41:677–691

    PubMed  CAS  Google Scholar 

  • Potash LM (1972) Noise-induced changes in calls of the Japanese quail (Coturnix coturnix japonica). Psychonomic Sci 26:252–254

    Google Scholar 

  • Pytte CL, Rusch KM, Ficken MS (2003) Regulation of vocal amplitude by the blue-throated hummingbird, Lampornis clemenciae. Anim Behav 66:703–710

    Article  Google Scholar 

  • Ratcliffe JM, ter Hofstede HM, Avila-Flores R, Fenton MB, McCracken GF, Biscardi S, Blasko J, Gillam E, Orprecio J, Spanjer G (2004) Conspecifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis. Can J Zool 82:966–971

    Article  Google Scholar 

  • Scheifele PM, Andrew S, Cooper RA, Darre M, Musiek FE, Max L (2005) Indication of a Lombard vocal response in the St. Lawrence River Beluga. J Acoust Soc Am 117:1486–1492

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U, Joermann G (1986) The influence of acoustical interferences on echolocation in bats. Mammalia 50:379–389

    Article  Google Scholar 

  • Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–569

    Article  Google Scholar 

  • Schulz GM, Varga M, Jeffires K, Ludlow CL, Braun AR (2005) Functional neuroanatomy of human vocalization: an H 152 O PET study. Cereb Cortex 15:1835–1847

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J, Wells KD (1983) An experimental study of acoustic interference between two species of neotropical treefrogs. Anim Behav 31:181–190

    Article  Google Scholar 

  • Schwartz C, Tressler J, Keller H, Vanzant M, Ezell S, Smotherman M (2007) The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. J Comp Physiol A 193:853–863

    Article  Google Scholar 

  • Simmons JA, Lavender WA, Lavender BA, Childs JE, Hulebak K, Rigden MR, Sherman J, Woolman B, O’Farrell MJ (1978) Echolocation by free-tailed bats (Tadarida). J Comp Physiol A 125:291–299

    Article  Google Scholar 

  • Sinnot JM, Stebbins WC, Moody DB (1975) Regulation of voice amplitude by the monkey. J Acoust Soc Am 58:412–414

    Article  Google Scholar 

  • Smotherman MS (2007) Sensory feedback control of mammalian vocalizations. Behav Brain Res 182:315–326

    Article  PubMed  Google Scholar 

  • Surlykke A, Moss CF (2000) Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am 108:2419–2429

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky N, Moss CF (2007) Hippocampal cellular and network activity in freely moving echolocating bats. Nat Neurosci 10:224–233

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky N, Fenton MB, Tsoar A, Korine C (2004) Dynamics of jamming avoidance in echolocating bats. Proc Biol Sci 271:1467–1475

    Article  PubMed  Google Scholar 

  • Van Summers W, Pisoni DB, Bernacki RH, Pedlow RI, Stokes MA (1988) Effects of noise on speech production: acoustic and perceptual analysis. J Acoust Soc Am 84:917–928

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Clint Netherland and the Texas A&M University Athletic Department for access to the bats of Kyle Field. We thank the Texas Parks and Wildlife Department for the collection permits. We thank Kristin Denton for her most excellent animal care and help with running the experiments, Dr. Kirsten Bohn for help with statistics, and Christine Schwartz, Jenna Jarvis, Dr. Bohn, and Dr. George Pollak for many informative discussions. All husbandry and experimental procedures were in accordance with NIH guidelines for experiments involving vertebrate animals and were approved by the local IACUC. The research was supported by Texas A&M University and NIH Grant DC007962 to M.S. Smotherman

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jedediah Tressler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tressler, J., Smotherman, M.S. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats. J Comp Physiol A 195, 923–934 (2009). https://doi.org/10.1007/s00359-009-0468-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0468-x

Keywords

Navigation