Skip to main content
Log in

Gesunder Glaskörper und seine Alterung

Aging and age-related changes of the vitreous body

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund und Fragestellung

Das Augenvolumen besteht zu ca. 80 % aus Glaskörper, dessen postnataler Nutzen kontrovers diskutiert wird. Die physiologischen Funktionen des Glaskörpers spielen im klinischen Alltag nahezu keine Rolle. Im Laufe des Lebens kommt es zu einer zunehmenden Verflüssigung des Glaskörpergels sowie zu einem Kollaps des vitrealen Fasergerüsts (Syneresis). Diese altersabhängigen Veränderungen des Glaskörpers hingegen haben bei der Entstehung von rhegmatogenen Netzhautablösungen und Erkrankungen der vitreoretinalen Grenzfläche eine entscheidende pathogenetische Bedeutung.

Ergebnisse und Diskussion

Der Glaskörper ist nicht nur für die Entwicklung des Auges, sondern auch postnatal von großer Bedeutung. Ein intakter Glaskörper fungiert als mechanischer und metabolischer Puffer für die Netzhaut und ermöglicht den streulichtfreien Lichtdurchtritt zur neurosensorischen Retina. Zum Verständnis vitreoretinaler Erkrankungen und deren Therapie sind grundlegende Kenntnisse über die Embryologie, Anatomie, Biochemie sowie die Besonderheiten der altersabhängigen Veränderungen des Glaskörpergerüsts und der vitreoretinalen Grenzfläche von Vorteil.

Abstract

Background and purpose

The vitreous body is the largest component of the eye. It is a colorless, gelatinous, highly hydrated matrix that fills the posterior segment of the eye between the lens, the ciliary body and the retina. Changes in vitreal structure that occur with aging, such as vitreous liquefaction and fiber aggregation (vitreous syneresis) are important in the pathogenesis of many vitreoretinal diseases. During senescence, the vitreous volume is reduced, the vitreous body collapses and the vitreal fibers are continuously thickened, become more tortuous and surrounded by liquefied vitreous. This sequence of age-related changes results from a progressive reorganization of the hyaluronic acid and collagen molecular networks.

Results and discussion

Although the vitreous body may at first glance appear to be a redundant tissue than can be removed and almost normal ocular function will still be maintained, the vitreous body and the vitreoretinal interface have a crucial influence on the physiology and pathophysiology of the eye. Age-related liquefaction and vitrous syneresis play an essential pathogenetic role in the development of posterior vitreous detachment, retinal breaks and retinal detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bishop P (1996) The biochemical structure of mammalian vitreous. Eye (Lond) 10(Pt 6):664–670

    Article  Google Scholar 

  2. Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19:323–344

    Article  CAS  PubMed  Google Scholar 

  3. Campo RV (1983) Similarity of familial exudative vitreoretinopathy and retinopathy of prematurity. Arch Ophthalmol 101:821

    Article  CAS  PubMed  Google Scholar 

  4. De Smet MD, Gad Elkareem AM, Zwinderman AH (2013) The vitreous, the retinal interface in ocular health and disease. Ophthalmologica 230:165–178

    Article  PubMed  Google Scholar 

  5. Eisner G (1975) Gross anatomy of the vitreous body (authorʼs transl). Albrecht Von Graefes Arch Klin Exp Ophthalmol 193:33–56

    Article  CAS  PubMed  Google Scholar 

  6. Eisner G (1973) Slit lamp studies on the vitreous body in autopsy. V. The vitreous body in the young child. Albrecht Von Graefes Arch Klin Exp Ophthalmol 187:5–20

    Article  CAS  PubMed  Google Scholar 

  7. Gilmour DF (2014) Familial exudative vitreoretinopathy and related retinopathies. Eye (Lond) 29(1):1–14

  8. Johnson MW (2010) Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol 149:371–382.e1

    Article  PubMed  Google Scholar 

  9. Kohno T, Sorgente N, Ishibashi T et al (1987) Immunofluorescent studies of fibronectin and laminin in the human eye. Invest Ophthalmol Vis Sci 28:506–514

    CAS  PubMed  Google Scholar 

  10. Los LI, Van Der Worp RJ, Van Luyn MJ et al (2003) Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Invest Ophthalmol Vis Sci 44:2828–2833

    Article  PubMed  Google Scholar 

  11. Mitchell CA, Risau W, Drexler HC (1998) Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn 213:322–333

    Article  CAS  PubMed  Google Scholar 

  12. Sebag J (1993) Abnormalities of human vitreous structure in diabetes. Graefes Arch Clin Exp Ophthalmol 231:257–260

    Article  CAS  PubMed  Google Scholar 

  13. Sebag J (1992) Anatomy and pathology of the vitreo-retinal interface. Eye (Lond) 6(Pt 6):541–552

    Google Scholar 

  14. Sebag J (2004) Anomalous posterior vitreous detachment: qa unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242:690–698

    Article  CAS  PubMed  Google Scholar 

  15. Sebag J (1987) Structure, function, and age-related changes of the human vitreous. Bull Soc Belge Ophtalmol 223(Pt 1):37–57

    PubMed  Google Scholar 

  16. Sebag J (2008) To see the invisible: the quest of imaging vitreous. Dev Ophthalmol 42:5–28

    Article  CAS  PubMed  Google Scholar 

  17. Sebag J (2008) Vitreoschisis. Graefes Arch Clin Exp Ophthalmol 246:329–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sebag J (2011) Vitreoschisis in diabetic macular edema. Invest Ophthalmol Vis Sci 52:8455–8456; author reply 8456–8457

  19. Sebag J (2009) Vitreous: the resplendent enigma. Br J Ophthalmol 93:989–991

    Article  CAS  PubMed  Google Scholar 

  20. Spitzer MS, Kaczmarek RT, Yoeruek E et al (2009) The distribution, release kinetics, and biocompatibility of triamcinolone injected and dispersed in silicone oil. Invest Ophthalmol Vis Sci 50:2337–2343

    Article  PubMed  Google Scholar 

  21. Szurman P, Frank C, Kaczmarek RT et al (2009) Vitreous substitutes as drug release systems. Klin Monbl Augenheilkd 226:718–724

    Article  CAS  PubMed  Google Scholar 

  22. Williamson TH, Watt L, Mokete B (2009) Black or negative flashes in posterior vitreous detachment a transient symptom before lightning flashes commence. Eye (Lond) 23:1477

    Article  CAS  Google Scholar 

  23. Yonemoto J, Ideta H, Sasaki K et al (1994) The age of onset of posterior vitreous detachment. Graefes Arch Clin Exp Ophthalmol 232:67–70

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Regina Ebenhoch (Tübingen) für die Erstellung der Graphiken und Herrn Prof. Martin Rohrbach (Tübingen) für die Überlassung der Photographie des Mittendorf-Flecks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.S. Spitzer FEBO.

Ethics declarations

Interessenkonflikt

M.S. Spitzer und K. Januschowski geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spitzer, M., Januschowski, K. Gesunder Glaskörper und seine Alterung. Ophthalmologe 112, 552–558 (2015). https://doi.org/10.1007/s00347-015-0031-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-015-0031-9

Schlüsselwörter

Keywords

Navigation