Skip to main content
Log in

In-vitro- und In-vivo-Untersuchungen zur Presbyopiebehandlung mit Femtosekundenlasern

In vitro and in vivo investigations on the treatment of presbyopia using femtosecond lasers

  • Orginalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Ultrakurze (Femtosekunden) Laserpulse können feinste Schnitte in menschlichem Gewebe produzieren, ohne dieses zu eröffnen. Die Anwendbarkeit der Femtosekunden- (fs-)Lasertechnik an der Augenlinse im Hinblick auf eine mögliche Presbyopietherapie sollte evaluiert werden.

Material und Methoden

Insgesamt wurde an 150 Schweinelinsen in vitro eine fs-Lentotomie vorgenommen. Schnittkonfiguration und Laserparameter wurden optimiert, um möglichst glatte Schnitte mit möglichst geringer Gasblasenbildung zu erhalten. Dann wurden 4 Albinokaninchen in vivo behandelt, 3 Monate lang beobachtet und schließlich die gelaserten Linsen entnommen und beurteilt.

Ergebnisse

Bei geeigneter Parameterwahl am fs-Laser kann Lichtstreuung durch persistierende und konfluierende Gasblasen in der Schweinelinse fast komplett vermieden werden. Eine Pulsenergie von weniger als 1,2 µJ und eine Schnittgeometrie mit Spotabständen von ≥5 µm sind dabei entscheidend. In vivo blieben die Kaninchenlinsen über 3 Monate makroskopisch klar. Lediglich die direkt um die Plasmazündung gruppierten Zellstrukturen waren zertrennt, bereits ca. 5–10 µm entfernte Strukturen schienen unverletzt. Katarakte traten in keiner der Kaninchenlinsen auf.

Schlussfolgerung

Die fs-Laser-Lentotomie könnte sich prinzipiell zur Therapie des Presbyopie eignen.

Abstract

Background

Ultrashort (femtosecond) laser pulses can generate precise cuts in biological tissue without damaging the surface. The application of femtosecond laser technology at the lens was evaluated with respect to a possible treatment of presbyopia.

Materials and methods

Femtosecond laser lentotomy was performed on 150 pig lenses in vitro. Cutting geometry and laser settings were optimized to generate smooth cuts with a minimum of produced gas bubbles. Four rabbit lenses were treated afterwards in vivo and were controlled for 3 months post-treatment. The lenses were then extracted and evaluated.

Results

With suitable laser settings, light scattering due to residual gas bubbles could be almost completely avoided in pig lenses. A pulse energy of less than 1.2 µJ and a cutting geometry with spot separations of more than 5 µm are important. The rabbit lenses stayed macroscopically clear for 3 months in vivo. Only the cell structures directly adjacent to the laser focus were cut; structures 5–10 µm away appeared to be intact. No cataract formation occurred during this time.

Conclusion

Femtosecond laser application allows precise and smooth cuts inside pig and rabbit lenses without damage to adjacent tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Alio JL, Mulet ME (2005) Presbyopia correction with an anterior chamber phakic multifocal intraocular lens. Ophthalmology 112: 1368–74

    Article  PubMed  Google Scholar 

  2. Binder PS (2004) Flap dimensions created with the IntraLase FS laser. J Cataract Refract Surg 30: 26–32

    PubMed  Google Scholar 

  3. Bundesministerium für Bildung und Forschung (BMBF) Förderkennzeichen 13N8709

  4. Breitenfeld P, Ripken T, Lubatschowski H (2005) Finite Element Method-Simulation of the Human Lens during Accommodation. SPIE 5863: 1-9

    Google Scholar 

  5. Brown N (1973) The shape and internal form of the lens of the eye on accommodation. Exp Eye Res 15: 441–459

    Article  PubMed  Google Scholar 

  6. Burd HJ, Judge SJ, Cross JA (2002) Numerical modelling of the accommodating lens. Vision Research 42: 2235–2251

    Article  PubMed  Google Scholar 

  7. Cantu R, Rosales MA, Tepichin E et al. (2004) Advanced surface ablation for presbyopia using the Nidek EC-5000 laser. J Refract Surg 20 (Suppl): 711–713

    Google Scholar 

  8. Cazabon S, Dabbs TR (2002) Intralenticular metallic foreign body. J Cataract Refract Surg 28: 2233–2234

    Article  PubMed  Google Scholar 

  9. Fawcett SL, Herman WK, Alfieri CD et al. (2001) Stereoacuity and foveal fusion in adults with long-standing surgical monovision. J AAPOS 5: 342–347

    PubMed  Google Scholar 

  10. Findl O, Kriechbaum K, Menapace R et al. (2004) Laserinterferometric assessment of pilocarpine-induced movement of an accommodating intraocular lens: a randomized trial. Ophthalmology 111: 1515–1521

    Article  PubMed  Google Scholar 

  11. Fisher RF (1971) The elastic constant of the human lens. J Physiology 212:147–180

    Google Scholar 

  12. Gerten G, Michels A, Olmes A (2001) Torische Intraokularlinsen. Klinische Ergebnisse und Rotationsstabilitat. Ophthalmologe 98: 715–720

    Article  PubMed  Google Scholar 

  13. Glasser A, Campbell MCW (1998) Presbyopia and the optical changes in the human crystalline lens with age. Vision. Res. 38: 209–229

    Google Scholar 

  14. Glasser A, Kaufman PL (1999) The mechanism of accommodation in primates. Ophthalmology 106: 863–872

    Article  PubMed  Google Scholar 

  15. Glasser A, Campbell MCW (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Research 39:1991–2015

    Article  PubMed  Google Scholar 

  16. Goldberg DB (2001) Laser in situ keratomileusis monovision. J Cataract Refract Surg 27: 1449–1455

    Article  PubMed  Google Scholar 

  17. Gullstrand A (1924) Der Mechanismus der Akkommodation in: H von Helmholtz: Treatise on Physiological Optics, 3rd en. Optic Soc Am: 226–376

    Google Scholar 

  18. Hamilton DR, Davidorf JM, Maloney RK (2002) Anterior ciliary sclerotomy for treatment of presbyopia: a prospective controlled study. Ophthalmology 109: 1970–1976

    Article  PubMed  Google Scholar 

  19. Heisterkamp A, Ripken T, Mamom T et al. (2002) Nonlinear side effects of fs-pulses inside corneal tissue during photodisruption. Appl Phys B 74: 1–7

    Article  Google Scholar 

  20. Heisterkamp A, Mammon T, Kermani O et al. (2003) Intrastromal refractive surgery with ultrashort laser pulses – in vivo study on rabbit eyes. Graefes Arch Clin Exp Ophthalmol 241: 511–517

    Article  PubMed  Google Scholar 

  21. Helmholtz H (1855) Über die Akkommodation des Auges. Graefe’s Arch Ophthalmol 1: 1–74

  22. Hockwin O (1985) in Biochemie des Auges: Beihefte der „klinischen Monatsblätter für Augenheilkunde“, Band 107, Enke Verlag Stuttgart: 82–109

  23. Jonas JB (2003) Lamellar femtosecond laser keratoplasty with conical incisions and positional spikes. Graefes Arch Clin Exp Ophthalmol 241: 781

    Article  PubMed  Google Scholar 

  24. Kermani O, Schmiedt K, Oberheide U et al. (2003) Early results of Nidek customized aspheric transition zones (CATz) in laser in situ keratomileusis. J Refract Surg 19 (Suppl 2): 190–194

    Google Scholar 

  25. Kermani O (2004) Alignment in customized laser in situ keratomileusis. Refract Surg 20 (Suppl): 651–658

    Google Scholar 

  26. Kermani O, Schmiedt K, Oberheide U et al. (2005) Hyperopic Laser in situ Keratomileusis with 5.5-, 6.5-, and 7.0-mm Optical Zones. J Refract Surg 21: 52–58

    PubMed  Google Scholar 

  27. Krag S, Andreassen TT (1996) Elastic properties of the lens capsule in relation to accommodation and presbyopia. Invest Ophthal Vis Sci 37

  28. Krueger RR, Sun X, Stroh J et al. (2001) Experimental Increase in Accommodative Potential after Neodymium:Yttrium-Aluminum-Garnet Laser Photodisruption of Paired Cadaver Lenses. Ophthalmology 108: 2122–2129

    Article  PubMed  Google Scholar 

  29. Kurtz RM, Horvath C, Liu HH et al. (1998) Lamellar refractive Surgery with scannes intrastromal picosecond and femtosecond Laser Pulses in Animal Eyes. J Refract Surg 14: 541–548

    PubMed  Google Scholar 

  30. Langenbucher A, Huber S, Nguyen NX et al. (2003) Measurement of accommodation after implantation of an accommodating posterior chamber intraocular lens. J. Cataract Refract. Surgery 29: 677–685

    Google Scholar 

  31. Lin JT, Mallo O (2003) Treatment of presbyopia by infrared laser radial sclerectomy. J Refract Surg 19: 465–467

    PubMed  Google Scholar 

  32. Lou MF (2003) Redox regulation in the lens. Prog Retin Eye Res 22: 657–682

    Article  PubMed  Google Scholar 

  33. Mathews S (1999) Scleral expansion surgery does not restore accommodation in human presbyopia. Ophthalmology 106: 873–877

    Article  PubMed  Google Scholar 

  34. Myers RI, Krueger RR (1998) Novel Approaches to Correction of Presbyopia with Laser Modifcation of the Crystalline Lens. J Refract Surg14: 136–139

    Google Scholar 

  35. Nijkamp MD, Dolders MG, de Brabander J et al. (2004) Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial. Ophthalmology 111: 1832–1839

    Article  PubMed  Google Scholar 

  36. Nordan LT, Slade SG, Baker RN et al. (2003) Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series. J Refract Surg 19: 8–14

    PubMed  Google Scholar 

  37. Popiolek-Masajada A, Kasprzak H (2002) Model of the optical system of the human eye during accommodation. Ophthal Physiol Opt 22:201–208

    Article  Google Scholar 

  38. Ripken T, Oberheide U, Heisterkamp A et al. (2004) Investigations for the correction of presbyopia by fs-laser-induced cuts. SPIE 5314, Ophthalmic Technologies XIV, 27–35

  39. Ripken T, Oberheide U, Ziltz C et al. (2005) Fs-laser induced elasticity changes to improve presbyopic lens accommodation. SPIE 5688 Ophthalmic Technologies XV (im Druck)

  40. Schachar RA (1992) Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann Ophthalmol 24: 445–452

    PubMed  Google Scholar 

  41. Seitz B, Brunner H, Viestenz A et al. (2005) Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser. Am J Ophthalmol 139: 941–944

    Article  PubMed  Google Scholar 

  42. Telandro A (2004) Pseudo-accommodative cornea: a new concept for correction of presbyopia. J Refract Surg 20 (Suppl): 714–717

    Google Scholar 

  43. Wegener A (2003) Kataraktpravention. Therapeutische Ansatze und kritische Betrachtung des Erreichten. Ophthalmologe 100: 176–180

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Arbeiten werden gefördert durch das Bundesministerium für Bildung und Forschung BMBF (Förderkennzeichen: 13N8709).

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gerten.

Additional information

Vorgetragen auf der DOG 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerten, G., Ripken, T., Breitenfeld, P. et al. In-vitro- und In-vivo-Untersuchungen zur Presbyopiebehandlung mit Femtosekundenlasern. Ophthalmologe 104, 40–46 (2007). https://doi.org/10.1007/s00347-006-1400-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-006-1400-1

Schlüsselwörter

Keywords

Navigation