Skip to main content
Log in

Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrated the feasibility of remote detection and differentiation of some very similar agricultural-activity related bioaerosols, namely barley, corn, and wheat grain dusts, through nonlinear fluorescence of fragments induced by the high-intensity inside filaments of femtosecond laser pulses in air. The signals were detected in Lidar configuration with targets located at 4.7 m away from the detection system. All the species showed identical spectra, namely those from molecular C2 and CN bands, as well as atomic Si, C, Mg, Al, Na, Ca, Mn, Fe, Sr and K lines. These identical spectral bands and lines reveal similar chemical compositions; however, the relative intensities of the spectra are different showing different element abundances from these three bio-targets. The intensity ratios of different elemental lines were used to distinguish these three samples. Good reproducibility was obtained. We expect that this technique could be used at long distance and thus played as a sensor of similar biological hazards for public and defense security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.G. Blevins, C.R. Shaddix, S.M. Sickafoose, P.M. Walsh, Appl. Opt. 42, 6107 (2003)

    ADS  Google Scholar 

  2. A.K. Rai, F.Y. Yueh, J.P. Singh, Appl. Opt. 42, 2078 (2003)

    ADS  Google Scholar 

  3. K.Y. Yamamoto, D.A. Cremers, M.J. Ferris, L.E. Foster, Appl. Spectrosc. 50, 222 (1996)

    Article  ADS  Google Scholar 

  4. M. Corsi, V. Palleschi, E. Tognoni (Eds.), Spectrochim. Acta B 56, 565 (2001)

  5. N. Omenetto, J.J. Lasema (Eds.), Spectrochim. Acta B 60, 877 (2005)

  6. R. Grönlund, M. Lundqvist, S. Svanberg, Opt. Lett. 30, 2882 (2005)

    Article  ADS  Google Scholar 

  7. A. Assion, M. Wollenhaupt, L. Hag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, T. Baumert, Appl. Phys. B 77, 391 (2003)

    Article  ADS  Google Scholar 

  8. F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J.-P. Wolf, Appl. Phys. Lett. 87, 063901 (2005)

    Article  Google Scholar 

  9. P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, L. Wöste, J. Anal. Atom. Spectrom. 19, 437 (2004)

    Article  Google Scholar 

  10. S.L. Chin, From Multiphoton to Tunnel Ionization, in: Advances in Multiphoton Processes and Spectroscopy, ed. by S.H. Lin, A.A. Villaeys, Y. Fujimura (World Scientific, Singapore, 2004), vol. 16, pp. 249–272

  11. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, P. Laloi, J. Appl. Phys. 99, 084701 (2006)

    Article  Google Scholar 

  12. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Wöste, Appl. Phys. Lett. 85, 3977 (2004)

    Article  ADS  Google Scholar 

  13. S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, Can. J. Phys. 83, 863 (2005) and references therein

    Article  ADS  Google Scholar 

  14. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, P. Hatzes, R. Sauerbrey, L. Wöste, J.-P. Wolf, Phys. Rev. E 69, 036607 (2004)

    Article  ADS  Google Scholar 

  15. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Wöste, Appl. Phys. Lett. 85, 3977 (2004)

    Article  ADS  Google Scholar 

  16. H.L. Xu, W. Liu, S.L. Chin, Opt. Lett. 31, 1540 (2006)

    Article  ADS  Google Scholar 

  17. S. Morel, N. Leone, P. Adam, J. Amouroux, Appl. Opt. 42, 6184 (2003)

    ADS  Google Scholar 

  18. C.A. Munson, F.C. De Lucia Jr., T. Piehler, K.L. McNesby, A.W. Miziolek, Spectrochim. Acta B 60, 1217 (2005)

    Article  Google Scholar 

  19. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, P. Laloi, Appl. Phys. Lett. 88, 063901 (2006)

    Article  Google Scholar 

  20. S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, V.P. Kandidov, J. Nonlinear Opt. Phys. Mater. 8, 121 (1999)

    Article  ADS  Google Scholar 

  21. V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Aközbek, C.M. Bowden, S.L. Chin, Appl. Phys. B 77, 149 (2003)

    Article  ADS  Google Scholar 

  22. N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin, C.M. Bowden, Phys. Rev. Lett. 89, 143901 (2002)

    Article  ADS  Google Scholar 

  23. NIST Database; see http://physics.nist.gov/cgi-bin/AtData/lines_form

  24. R.W.B. Pearse, A.G. Gaydon, The Identification of Molecular Spectra (Chapman and Hall, New York, 1976)

    Google Scholar 

  25. H.L. Xu, J.F. Daigle, Q. Luo, S.L. Chin, Appl. Phys. B 82, 655 (2006)

    Article  ADS  Google Scholar 

  26. C. Aragón, J.A. Aguilera, F. Peñalba, Appl. Spectrosc. 53, 1259 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.L. Xu.

Additional information

PACS

42.68.Wt; 95.75.Fg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Méjean, G., Liu, W. et al. Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy. Appl. Phys. B 87, 151–156 (2007). https://doi.org/10.1007/s00340-006-2536-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2536-z

Keywords

Navigation