Skip to main content

Advertisement

Log in

Human hyper-IgE syndrome: singular or plural?

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Spectacular progress has been made in the characterization of human hyper-IgE syndrome (HIES) over the last 50 years. HIES is a primary immunodeficiency defined as an association of atopy in a context of very high serum IgE levels, characteristic bacterial and fungal diseases, low-level clinical and biological inflammation, and various non-hematopoietic developmental manifestations. Somewhat arbitrarily, three disorders were successively put forward as the underlying cause of HIES: autosomal dominant (AD) STAT3 deficiency, the only disorder corresponding to the original definition of HIES, and autosomal recessive (AR) DOCK8 and PGM3 deficiencies, in which atopy and high serum IgE levels occur in a context of manifestations not seen in patients with typical HIES. Indeed, these three disorders disrupt different molecular pathways, affect different cell types, and underlie different clinical phenotypes. Surprisingly, several other inherited inborn errors of immunity in which serum IgE levels are high, sometimes almost as high as those in HIES patients, are not considered to belong to the HIES group of diseases. Studies of HIES have been further complicated by the lack of a high serum IgE phenotype in all mouse models of the disease other than two Stat3 mutant strains. The study of infections in mutant mice has helped elucidate only some forms of HIES and infection. Mouse models of these conditions have also been used to study non-hematopoietic phenotypes for STAT3 deficiency, tissue-specific immunity for DOCK8 deficiency, and cell lineage maturation for PGM3 deficiency. We review here the history of the field of HIES since the first clinical description of this condition in 1966, together with the three disorders commonly referred to as HIES, focusing, in particular, on their mouse models. We propose the restriction of the term “HIES” to patients with an AD STAT3-deficiency phenotype, including the most recently described AR ZNF341 deficiency, thus excluding AR DOCK8 and PGM3 deficiencies from the definition of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolhassani H et al (2018) Clinical, immunologic, and genetic spectrum of 696 patients with combined immunodeficiency. J Allergy Clin Immunol 141(4):1450–1458

    Article  PubMed  CAS  Google Scholar 

  • Avery DT et al (2010) B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 207(1):155–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aydin SE et al (2015) DOCK8 deficiency: clinical and immunological phenotype and treatment options—a review of 136 patients. J Clin Immunol 35(2):189–198

    Article  PubMed  CAS  Google Scholar 

  • Bannatyne RM, Skowron PN, Weber JL (1969) Job’s syndrome—a variant of chronic granulomatous disease. Report of a case. J Pediatr 75(2):236–242

    Article  PubMed  CAS  Google Scholar 

  • Ben-Khemis L et al (2017) A founder mutation underlies a severe form of phosphoglutamase 3 (PGM3) deficiency in Tunisian patients. Mol Immunol 90:57–63

    Article  PubMed  CAS  Google Scholar 

  • Berger M et al (1980) IgE antibodies to Staphylococcus aureus and Candida albicans in patients with the syndrome of hyperimmunoglobulin E and recurrent infections. J Immunol 125(6):2437–2443

    PubMed  CAS  Google Scholar 

  • Bernth-Jensen JM, Holm M, Christiansen M (2016) Neonatal-onset T(–)B(–)NK(+) severe combined immunodeficiency and neutropenia caused by mutated phosphoglucomutase 3. J Allergy Clin Immunol 137(1):321–324

    Article  PubMed  Google Scholar 

  • Beziat V et al (2018) A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol 3(24):eaat4956

    Article  PubMed  Google Scholar 

  • Bitoun E et al (2002) Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol 118(2):352–361

    Article  PubMed  CAS  Google Scholar 

  • Boisson B et al (2013) An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39(4):676–686

    Article  PubMed  CAS  Google Scholar 

  • Buckley RH, Becker WG (1978) Abnormalities in the regulation of human IgE synthesis. Immunol Rev 41:288–314

    Article  PubMed  CAS  Google Scholar 

  • Buckley RH, Wray BB, Belmaker EZ (1972) Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 49(1):59–70

    PubMed  CAS  Google Scholar 

  • Chandesris MO et al (2012) Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a French national survey. Medicine 91(4):e1–e19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chavanas S et al (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25(2):141–142

    Article  PubMed  CAS  Google Scholar 

  • Cheng P et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou WC, Levy DE, Lee CK (2006) STAT3 positively regulates an early step in B-cell development. Blood 108(9):3005–3011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Church JA et al (1976) T lymphocyte dysfunction, hyperimmunoglobulinemia E, recurrent bacterial infections, and defective neutrophil chemotaxis in a Negro child. J Pediatr 88(6):982–985

    Article  PubMed  CAS  Google Scholar 

  • Clark RA et al (1973) Defective neutrophil chemotaxis and cellular immunity in a child with recurrent infections. Ann Intern Med 78(4):515–519

    Article  PubMed  CAS  Google Scholar 

  • Cooper PJ et al (2008) Environmental determinants of total IgE among school children living in the rural Tropics: importance of geohelminth infections and effect of anthelmintic treatment. BMC Immunol 9:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford G et al (2013) DOCK8 is critical for the survival and function of NKT cells. Blood 122(12):2052–2061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cypowyj S et al (2012) Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol 42(9):2246–2254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dagoneau N et al (2004) Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am J Hum Genet 74(2):298–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahl MV, Greene WH Jr, Quie PG (1976) Infection, dermatitis, increased IgE, and impaired neutrophil chemotaxis. A possible relationship. Arch Dermatol 112(10):1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Davila I et al (2015) Relationship between serum total IgE and disease severity in patients with allergic asthma in Spain. J Investig Allergol Clin Immunol 25(2):120–127

    PubMed  CAS  Google Scholar 

  • Davis SD, Schaller J, Wedgwood RJ (1966) Job’s syndrome recurrent “cold” Staphylococcal abscesses. Lancet 1(7445):1013–1015

    Article  PubMed  CAS  Google Scholar 

  • Davis BR et al (2010) Somatic mosaicism in the Wiskott–Aldrich syndrome: molecular and functional characterization of genotypic revertants. Clin Immunol 135(1):72–83

    Article  PubMed  CAS  Google Scholar 

  • De Cree J et al (1978) Defective neutrophil chemotaxis and raised serum ige levels in a child with recurrent bacterial infections and eczema. Influence of levamisole. Arch Dis Child 53(2):144–149

    Article  PubMed  PubMed Central  Google Scholar 

  • de Beaucoudrey L et al (2008) Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 205(7):1543–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deenick EK et al (2013) Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. J Exp Med 210(12):2739–2753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobbs K et al (2015) Inherited DOCK2 deficiency in patients with early-onset invasive infections. N Engl J Med 372(25):2409–2422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donabedian H, Gallin JI (1983) The hyperimmunoglobulin E recurrent-infection (Job’s) syndrome. A review of the NIH experience and the literature. Medicine 62(4):195–208

    Article  PubMed  CAS  Google Scholar 

  • Donabedian H, Alling DW, Gallin JI (1982) Levamisole is inferior to placebo in the hyperimmunoglobulin E recurrent-infection (Job’s) syndrome. N Engl J Med 307(5):290–292

    Article  PubMed  CAS  Google Scholar 

  • Dreskin SC, Goldsmith PK, Gallin JI (1985) Immunoglobulins in the hyperimmunoglobulin E and recurrent infection (Job’s) syndrome. Deficiency of anti-Staphylococcus aureus immunoglobulin A. J Clin Invest 75(1):26–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engelhardt KR et al (2009) Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 124(6):1289–1302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engelhardt KR et al (2015) The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol 136(2):402–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enomoto H et al (2008) Filaggrin null mutations are associated with atopic dermatitis and elevated levels of IgE in the Japanese population: a family and case-control study. J Hum Genet 53(7):615–621

    Article  PubMed  CAS  Google Scholar 

  • Erman B et al (2015) Combined immunodeficiency with CD4 lymphopenia and sclerosing cholangitis caused by a novel loss-of-function mutation affecting IL21R. Haematologica 100(6):e216-9

    Article  PubMed  CAS  Google Scholar 

  • Flesch IE et al (2015) Delayed control of herpes simplex virus infection and impaired CD4(+) T-cell migration to the skin in mouse models of DOCK8 deficiency. Immunol Cell Biol 93(6):517–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fornek JL et al (2006) Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood 107(3):1085–1091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freeman AF, Holland SM (2010) Clinical manifestations of hyper IgE syndromes. Dis Markers 29(3–4):123–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Frey-Jakobs S et al (2018) ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol 3(24):eaat4941

    Article  PubMed  Google Scholar 

  • Fuchs S et al (2016) Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur J Immunol 46(11):2639–2649

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y et al (2001) Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412(6849):826–831

    Article  PubMed  CAS  Google Scholar 

  • Furio L, Hovnanian A (2014) Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biol Chem 395(9):945–958

    Article  PubMed  CAS  Google Scholar 

  • Gammon WR (1979) Phagocyte chemotaxis. J Invest Dermatol 73(6):515–520

    Article  PubMed  CAS  Google Scholar 

  • Garama DJ et al (2015) A synthetic lethal interaction between glutathione synthesis and mitochondrial reactive oxygen species provides a tumor-specific vulnerability dependent on STAT3. Mol Cell Biol 35(21):3646–3656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garraud O et al (1999) Regulation of immunoglobulin production in hyper-IgE (Job’s) syndrome. J Allergy Clin Immunol 103(2 Pt 1):333–340

    Article  PubMed  CAS  Google Scholar 

  • Gaspar IM et al (2008) Long-term follow-up in Stuve-Wiedemann syndrome: a clinical report. Am J Med Genet A 146A(13):1748–1753

    Article  PubMed  Google Scholar 

  • Goldman D et al (1985) Twenty-seven protein polymorphisms by two-dimensional electrophoresis of serum, erythrocytes, and fibroblasts in two pedigrees. Am J Hum Genet 37(5):898–911

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gough DJ et al (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324(5935):1713–1716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gough DJ, Koetz L, Levy DE (2013) The MEK-ERK pathway is necessary for serine phosphorylation of mitochondrial STAT3 and Ras-mediated transformation. PLoS ONE 8(11):e83395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greig KT et al (2007) Agm1/Pgm3-mediated sugar nucleotide synthesis is essential for hematopoiesis and development. Mol Cell Biol 27(16):5849–5859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimbacher B, Holland SM, Puck JM (1998) The interleukin-4 receptor variant Q576R in hyper-IgE syndrome. N Engl J Med 338(15):1073–1074

    Article  PubMed  CAS  Google Scholar 

  • Grimbacher B et al (1999a) Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet 65(3):735–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimbacher B et al (1999b) Hyper-IgE syndrome with recurrent infections–an autosomal dominant multisystem disorder. N Engl J Med 340(9):692–702

    Article  PubMed  CAS  Google Scholar 

  • Ham H et al (2013) Dedicator of cytokinesis 8 interacts with talin and Wiskott–Aldrich syndrome protein to regulate NK cell cytotoxicity. J Immunol 190(7):3661–3669

    Article  PubMed  CAS  Google Scholar 

  • Ham H et al (2015) HkRP3 is a microtubule-binding protein regulating lytic granule clustering and NK cell killing. J Immunol 194(8):3984–3996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harada Y et al (2012) DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119(19):4451–4461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He JS et al (2017) IgG1 memory B cells keep the memory of IgE responses. Nat Commun 8(1):641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heimall J, Freeman A, Holland SM (2010) Pathogenesis of hyper IgE syndrome. Clin Rev Allergy Immunol 38(1):32–38

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Martin A, Gonzalez-Sarmiento R (2015) Recent advances in congenital ichthyoses. Curr Opin Pediatr 27(4):473–479

    Article  PubMed  Google Scholar 

  • Hill HR, Quie PG (1974) Raised serum-IgE levels and defective neutrophil chemotaxis in three children with eczema and recurrent bacterial infections. Lancet 1(7850):183–187

    Article  PubMed  CAS  Google Scholar 

  • Hill HR et al (1974) Defect in neutrophil granulocyte chemotaxis in Job’s syndrome of recurrent “cold” staphylococcal abscesses. Lancet 2(7881):617–619

    Article  PubMed  CAS  Google Scholar 

  • Hill HR et al (1976) Severe staphylococcal disease associated with allergic manifestations, hyperimmunoglobulinemia E, and defective neutrophil chemotaxis. J Lab Clin Med 88(5):796–806

    PubMed  CAS  Google Scholar 

  • Hillmer EJ et al (2016) STAT3 signaling in immunity. Cytokine Growth Factor Rev 31:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland SM et al (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357(16):1608–1619

    Article  PubMed  CAS  Google Scholar 

  • Holmes B et al (1966) Fatal granulomatous disease of childhood. An inborn abnormality of phagocytic function. Lancet 1(7449):1225–1228

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson DA, Harris H (1968) A third phosphoglucomutase locus in man. Ann Hum Genet 31(4):359–367

    Article  PubMed  CAS  Google Scholar 

  • Hsu AP et al (2013) Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J Allergy Clin Immunol 131(6):1586–1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5):448–457

    Article  PubMed  CAS  Google Scholar 

  • Ishizaka K, Ishizaka T (2016) Identification of IgE. J Allergy Clin Immunol 137(6):1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Ishizaka K, Ishizaka T, Hornbrook MM (1966a) Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity wth gamma-E-globulin antibody. J Immunol 97(6):840–853

    PubMed  CAS  Google Scholar 

  • Ishizaka K, Ishizaka T, Hornbrook MM (1966b) Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity. J Immunol 97(1):75–85

    PubMed  CAS  Google Scholar 

  • Jabara HH et al (2012) DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol 13(6):612–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janssen E et al (2016) A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest 126(10):3837–3851

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen E et al (2017) DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs. JCI Insight 2(19):e94298

    Article  PubMed Central  Google Scholar 

  • Jin S et al (2016) DOCK8: regulator of Treg in response to corticotropin-releasing hormone. Allergy 71(6):811–819

    Article  PubMed  CAS  Google Scholar 

  • Jing H et al (2014) Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype. J Allergy Clin Immunol 133(6):1667–1675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson SG, Bennich H (1967) Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 13(4):381–394

    PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson EK et al (2017) IgE sensitization in relation to preschool eczema and filaggrin mutation. J Allergy Clin Immunol 140(6):1572–1579 e5

    Article  PubMed  CAS  Google Scholar 

  • Kane A et al (2016) B-cell-specific STAT3 deficiency: insight into the molecular basis of autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol 138(5):1455–1458 e3

    Article  PubMed  CAS  Google Scholar 

  • Kasparek P et al (2016) A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene. Biol Chem 397(12):1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Kearney CJ et al (2017) DOCK8 Drives Src-dependent NK cell effector function. J Immunol 199:2118–2127

    Article  CAS  Google Scholar 

  • Keles S et al (2016) Dedicator of cytokinesis 8 regulates signal transducer and activator of transcription 3 activation and promotes TH17 cell differentiation. J Allergy Clin Immunol 138(5):1384–1394 e2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keupp K et al (2013) Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol Genet Genomic Med 1(4):223–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitamura H et al (2005) IL-6-STAT3 controls intracellular MHC class II alphabeta dimer level through cathepsin S activity in dendritic cells. Immunity 23(5):491–502

    Article  PubMed  CAS  Google Scholar 

  • Konno A et al (2004) Differential contribution of Wiskott–Aldrich syndrome protein to selective advantage in T- and B-cell lineages. Blood 103(2):676–678

    Article  PubMed  CAS  Google Scholar 

  • Kosfeld A et al (2017) Mutations in the leukemia inhibitory factor receptor (LIFR) gene and Lifr deficiency cause urinary tract malformations. Hum Mol Genet 26(9):1716–1731

    Article  PubMed  CAS  Google Scholar 

  • Kotlarz D et al (2013) Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med 210(3):433–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotlarz D et al (2014) Human IL-21 and IL-21R deficiencies: two novel entities of primary immunodeficiency. Curr Opin Pediatr 26(6):704–712

    Article  PubMed  CAS  Google Scholar 

  • Kreins AY et al (2015) Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med 212(10):1641–1662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnaswamy JK et al (2015) Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc Natl Acad Sci USA 112(10):3056–3061

    Article  PubMed  CAS  Google Scholar 

  • Kumanovics A et al (2010) Rapid molecular analysis of the STAT3 gene in Job syndrome of hyper-IgE and recurrent infectious diseases. J Mol Diagn 12(2):213–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lambe T et al (2011) DOCK8 is essential for T-cell survival and the maintenance of CD8 + T-cell memory. Eur J Immunol 41(12):3423–3435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laouar Y et al (2003) STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19(6):903–912

    Article  PubMed  CAS  Google Scholar 

  • Levy R et al (2016) Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci USA 113(51):E8277–E8285

    Article  PubMed  CAS  Google Scholar 

  • Ling Y et al (2015) Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med 212(5):619–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L et al (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208(8):1635–1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Looney TJ et al (2016) Human B-cell isotype switching origins of IgE. J Allergy Clin Immunol 137(2):579–586 e7

    Article  PubMed  CAS  Google Scholar 

  • Lundin KE et al (2015) Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene. Clin Immunol 161(2):366–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyons JJ, Milner JD (2018) Primary atopic disorders. J Exp Med https://doi.org/10.1084/jem.20172306

    Article  PubMed  Google Scholar 

  • Lyons JJ, Milner JD, Rosenzweig SD (2015) Glycans instructing immunity: the emerging role of altered glycosylation in clinical immunology. Front Pediatr 3:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyons JJ et al (2017) ERBIN deficiency links STAT3 and TGF-beta pathway defects with atopy in humans. J Exp Med 214(3):669–680

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ma CS et al (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205(7):1551–1557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma CS et al (2016) Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4 + T cells into distinct effector subsets. J Exp Med 213(8):1589–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma CA et al (2017) Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet 49(8):1192–1201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Massaad MJ et al (2017) DOCK8 and STAT3 dependent inhibition of IgE isotype switching by TLR9 ligation in human B cells. Clin Immunol 183:263–265

    Article  PubMed  CAS  Google Scholar 

  • Melillo JA et al (2010) Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J Immunol 184(5):2638–2645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller KA et al (2017) Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet 54(4):260–268

    Article  PubMed  CAS  Google Scholar 

  • Milner JD et al (2007) Lymphopenic mice reconstituted with limited repertoire T cells develop severe, multiorgan, Th2-associated inflammatory disease. Proc Natl Acad Sci USA 104(2):576–581

    Article  PubMed  CAS  Google Scholar 

  • Milner JD et al (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452(7188):773–776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minegishi Y et al (2006) Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25(5):745–755

    Article  PubMed  CAS  Google Scholar 

  • Minegishi Y et al (2007) Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448(7157):1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Minegishi Y et al (2009) Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med 206(6):1291–1301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyamoto Y et al (2016) Dock8 interacts with Nck1 in mediating Schwann cell precursor migration. Biochem Biophys Rep 6:113–123

    PubMed  PubMed Central  Google Scholar 

  • Mizesko MC et al (2013) Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol 131(3):840–848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogensen TH (2013) STAT3 and the Hyper-IgE syndrome: Clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. JAKSTAT 2(2):e23435

    PubMed  PubMed Central  Google Scholar 

  • Netherton EW (1958) A unique case of trichorrhexis nodosa; bamboo hairs. AMA Arch Derm 78(4):483–487

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Jackson H et al (2010) STAT3 controls the neutrophil migratory response to CXCR2 ligands by direct activation of G-CSF-induced CXCR2 expression and via modulation of CXCR2 signal transduction. Blood 115(16):3354–3363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nieminen P et al (2011) Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 89(1):67–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shea JJ et al (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oettgen HC (2016) Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol 137(6):1631–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867

    Article  PubMed  CAS  Google Scholar 

  • Okada S et al (2015) IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349(6248):606–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouederni M et al (2014) Clinical features of Candidiasis in patients with inherited interleukin 12 receptor beta1 deficiency. Clin Infect Dis 58(2):204–213

    Article  PubMed  CAS  Google Scholar 

  • Pabst HF et al (1971) Immunological abnormalities in Job’s syndrome. Pediatr Res 5:380

    Article  Google Scholar 

  • Palendira U et al (2012) Expansion of somatically reverted memory CD8 + T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. J Exp Med 209(5):913–924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pang H et al (2002) Identification of human phosphoglucomutase 3 (PGM3) as N-acetylglucosamine-phosphate mutase (AGM1). Ann Hum Genet 66(Pt 2):139–144

    Article  PubMed  CAS  Google Scholar 

  • Panopoulos AD et al (2006) STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 108(12):3682–3690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paslin D, Norman ME (1977) Atopic dermatitis and impaired neutrophil chemotaxis in Job’s syndrome. Arch Dermatol 113(6):801–805

    Article  PubMed  CAS  Google Scholar 

  • Paulson ML, Freeman AF, Holland SM (2008) Hyper IgE syndrome: an update on clinical aspects and the role of signal transducer and activator of transcription 3. Curr Opin Allergy Clin Immunol 8(6):527–533

    Article  PubMed  CAS  Google Scholar 

  • Peanne R et al (2017) Congenital disorders of glycosylation (CDG): Quo vadis? Eur J Med Genet https://doi.org/10.1016/j.ejmg.2017.10.012

    Article  PubMed  Google Scholar 

  • Pene J et al (1988) IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2. Proc Natl Acad Sci USA 85(18):6880–6884

    Article  PubMed  CAS  Google Scholar 

  • Picard C et al (2018) International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38(1):96–128

    Article  PubMed  Google Scholar 

  • Pincus SH et al (1975) Defective neutrophil chemotaxis with variant ichthyosis, hyperimmunoglobulinemia E, and recurrent infections. J Pediatr 87(6 Pt 1):908–911

    Article  PubMed  CAS  Google Scholar 

  • Prouvost-Danon A et al (1972) Immunochemical identification of mouse IgE. Immunology 23(4):481–491

    PubMed  PubMed Central  CAS  Google Scholar 

  • Puel A et al (2010a) Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol 22(4):467–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puel A et al (2010b) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207(2):291–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puel A et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332(6025):65–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puel A et al (2012) Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol 12(6):616–622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Punnonen J et al (1993) Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA 90(8):3730–3734

    Article  PubMed  CAS  Google Scholar 

  • Randall KL et al (2009) Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol 10(12):1283–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Randall KL et al (2011) DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med 208(11):2305–2320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renner ED et al (2004) Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr 144(1):93–99

    Article  PubMed  CAS  Google Scholar 

  • Renner ED et al (2007) STAT3 mutation in the original patient with Job’s syndrome. N Engl J Med 357(16):1667–1668

    Article  PubMed  CAS  Google Scholar 

  • Renner ED et al (2008) Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol 122(1):181–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruusala A, Aspenstrom P (2004) Isolation and characterisation of DOCK8, a member of the DOCK180-related regulators of cell morphology. FEBS Lett 572(1–3):159–166

    Article  PubMed  CAS  Google Scholar 

  • Salzer E et al (2014) Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J Allergy Clin Immunol 133(6):1651–1659 e12

    Article  PubMed  CAS  Google Scholar 

  • Samuelov L, Sprecher E (2014) Peeling off the genetics of atopic dermatitis-like congenital disorders. J Allergy Clin Immunol 134(4):808–815

    Article  PubMed  Google Scholar 

  • Sarri CA et al (2017) Netherton syndrome: a genotype-phenotype review. Mol Diagn Ther 21(2):137–152

    Article  PubMed  CAS  Google Scholar 

  • Sassi A et al (2014) Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol 133(5):1410–1419, 1419 e1-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schopfer K et al (1979) Staphylococcal IgE antibodies, hyperimmunoglobulinemia E and Staphylococcus aureus infections. N Engl J Med 300(15):835–838

    Article  PubMed  CAS  Google Scholar 

  • Schwerd T et al (2017) A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J Exp Med 214(9):2547–2562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel AM et al (2013) Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation. J Allergy Clin Immunol 132(6):1388–1396

    Article  PubMed  CAS  Google Scholar 

  • Singh AK et al (2014) DOCK8 regulates protective immunity by controlling the function and survival of RORgammat + ILCs. Nat Commun 5:4603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh AK et al (2017) DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling. JCI Insight https://doi.org/10.1172/jci.insight.94275

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith FJ et al (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38(3):337–342

    Article  PubMed  CAS  Google Scholar 

  • Spielberger BD et al (2012) Challenges of genetic counseling in patients with autosomal dominant diseases, such as the hyper-IgE syndrome (STAT3-HIES). J Allergy Clin Immunol 130(6):1426–1428

    Article  PubMed  Google Scholar 

  • Stanley J et al (1978) Hyperimmunoglobulin E syndrome. Arch Dermatol 114(5):765–767

    Article  PubMed  CAS  Google Scholar 

  • Steward-Tharp SM et al (2014) A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood 123(19):2978–2987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stray-Pedersen A et al (2014) PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 95(1):96–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeda K et al (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10(1):39–49

    Article  PubMed  CAS  Google Scholar 

  • Tangye SG et al (2017) Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells. J Allergy Clin Immunol 139(3):933–949

    Article  PubMed  CAS  Google Scholar 

  • Trifari S et al (2010) Revertant T lymphocytes in a patient with Wiskott–Aldrich syndrome: analysis of function and distribution in lymphoid organs. J Allergy Clin Immunol 125(2):439–448 e8

    Article  PubMed  CAS  Google Scholar 

  • Van Scoy RE et al (1975) Familial neutrophil chemotaxis defect, recurrent bacterial infections, mucocutaneous candidiasis, and hyperimmunoglobulinemia E. Ann Intern Med 82(6):766–771

    Article  PubMed  Google Scholar 

  • Verbsky JW, Chatila TA (2011) T-regulatory cells in primary immune deficiencies. Curr Opin Allergy Clin Immunol 11(6):539–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villarino AV et al (2015) Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol 194(1):21–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogel TP, Milner JD, Cooper MA (2015) The Ying and Yang of STAT3 in Human Disease. J Clin Immunol 35(7):615–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wada T, Candotti F (2008) Somatic mosaicism in primary immune deficiencies. Curr Opin Allergy Clin Immunol 8(6):510–514

    Article  PubMed  Google Scholar 

  • Wada T et al (2003) Second-site mutation in the Wiskott–Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings. J Clin Invest 111(9):1389–1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wada T et al (2004) Multiple patients with revertant mosaicism in a single Wiskott–Aldrich syndrome family. Blood 104(5):1270–1272

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn J et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323(5915):793–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weston WL et al (1977) A hyperimmunoglobulin E syndrome with normal chemotaxis in vitro and defective leukotaxis in vivo. J Allergy Clin Immunol 59(2):115–119

    Article  PubMed  CAS  Google Scholar 

  • White LR et al (1969) Leucocytes in Job’s syndrome. Lancet 1(7595):630

    Article  PubMed  CAS  Google Scholar 

  • Willems AP, van Engelen BG, Lefeber DJ (2016) Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta 1860(8):1640–1654

    Article  PubMed  CAS  Google Scholar 

  • Wilson RP et al (2015) STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. J Exp Med 212(6):855–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witemeyer S, Van Epps DE (1976) A familial defect in cellular chemotaxis associated with redheadedness and recurrent infection. J Pediatr 89(1):33–37

    Article  PubMed  CAS  Google Scholar 

  • Woellner C et al (2010) Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol 125(2):424–432 e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfle SJ et al (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41(2):413–424

    Article  PubMed  CAS  Google Scholar 

  • Wu G et al (2016) Glycoproteomic studies of IgE from a novel hyper IgE syndrome linked to PGM3 mutation. Glycoconj J 33(3):447–456

    Article  PubMed  CAS  Google Scholar 

  • Xiong H et al (2012) Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med 209(2):353–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X et al (2017) LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med 214(1):209–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Res 18(4):443–451

    Article  PubMed  CAS  Google Scholar 

  • Yang J et al (2005) Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 65(3):939–947

    PubMed  CAS  Google Scholar 

  • Yang XO et al (2007a) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282(13):9358–9363

    Article  PubMed  CAS  Google Scholar 

  • Yang J et al (2007b) Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev 21(11):1396–1408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Fliegauf M, Grimbacher B (2014) Hyper-IgE syndromes: reviewing PGM3 deficiency. Curr Opin Pediatr 26(6):697–703

    Article  PubMed  CAS  Google Scholar 

  • Yesil G et al (2014) Stuve-Wiedemann syndrome: is it underrecognized? Am J Med Genet A 164(9):2200–2205

    Article  CAS  Google Scholar 

  • Yoshida H, Abe T, Nakamura F (1979) Studies on the frequencies of PGM1, PGM3 and Es-D types from hair roots in Japanese subjects and the determination of these types from old hair roots. Forensic Sci Int 14(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Seppanen MRJ (2018) Immunoglobulin E—an innocent bystander in host defense? J Clin Immunol 38:223–224

    Article  PubMed  Google Scholar 

  • Zhang Q, Su HC (2011) Hyperimmunoglobulin E syndromes in pediatrics. Curr Opin Pediatr 23(6):653–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q et al (2009) Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med 361(21):2046–2055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H et al (2010) STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116(14):2462–2471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y et al (2014a) Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol 133(5):1400–1409, 1409 e1-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H et al (2014b) STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nat Commun 5:5798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q et al (2014c) DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med 211(13):2549–2566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Jing H, Su HC (2016) Recent Advances in DOCK8 Immunodeficiency Syndrome. J Clin Immunol 36(5):441–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

The funding was provided by Howard Hughes Medical Institute (NA; PI: JLC) and also by National Institute of Allergy and Infectious Diseases (Grant No. 5R01AI127564-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Boisson, B., Béziat, V. et al. Human hyper-IgE syndrome: singular or plural?. Mamm Genome 29, 603–617 (2018). https://doi.org/10.1007/s00335-018-9767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-018-9767-2

Keywords

Navigation