Skip to main content
Log in

Pathobiologie des microRNA-Systems

Pathobiology of the microRNA system

  • Übersichten
  • Published:
Der Pathologe Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

MicroRNA sind ungefähr 22 Nukleotide kurze, nicht proteinkodierende RNA-Moleküle, die semikomplementär an mRNA binden und dadurch die Proteinexpression inhibitorisch modellieren können. Eine aberrante microRNA-Expression ist Teil der molekularpathologischen Schädigung vieler degenerativer, entzündlicher und neoplastischer Erkrankungen und kann auch virusassoziiert dereguliert sein. Neben der intrazellulären regulatorischen Funktion, können microRNA ebenso in Thrombozyten und Exosomen oder an extrazelluläre Proteinkomplexe gebunden im Blut zirkulieren. Künstliche microRNA-Analoga („small interference RNA/siRNA“) und Anti-microRNA (Antagomir) werden in der molekularpathologischen Forschung zur Untersuchung der microRNA/mRNA-Interaktion verwendet, sollen aber in Zukunft auch therapeutisch eingesetzt werden.

Abstract

MicroRNAs are approximately 22 nucleotides short, non-protein-coding RNA molecules, which bind semi-complementary to mRNA and have an inhibitory effect on protein expression. Aberrant microRNA expression is part of the molecular pathological damage in several degenerative, inflammatory and neoplastic diseases and deregulation can also be virus-associated. Apart from intracellular regulatory functions, microRNA in platelets and exosomes or bound to extracellular protein complexes can also circulate in the blood. Artificial microRNA analogues (small interference RNA/siRNA) and anti-microRNA (antagomir) are used in molecular pathological research of microRNA/mRNA interaction and it is thought that they will also be used as therapeutic agents in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ahluwalia JK, Hariharan M, Bargaje R et al (2009) Incomplete penetrance and variable expressivity: is there a microRNA connection? Bioessays 31:981–992

    Article  PubMed  CAS  Google Scholar 

  2. Agirre X, Jiménez-Velasco A, San José-Enériz E (2008) Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 6:1830–1840

    Article  PubMed  CAS  Google Scholar 

  3. Arasu P, Wightman B, Ruvkun G (1991) Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev 5:1825–1833

    Article  PubMed  CAS  Google Scholar 

  4. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008

    Article  PubMed  CAS  Google Scholar 

  5. Boultwood J, Pellagatti A, Cattan H et al (2007) Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 139:578–589

    Article  PubMed  CAS  Google Scholar 

  6. Bousquet M, Quelen C, Rosati R et al (2008) Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506

    Article  PubMed  CAS  Google Scholar 

  7. Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature 467:415–419

    Article  PubMed  CAS  Google Scholar 

  8. Cimmino A, Calin GA, Fabbri M et al (2006) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949 Erratum in: Proc Natl Acad Sci U S A 103:2464

    Google Scholar 

  9. Cortez MA, Ivan C, Zhou P et al (2010) microRNAs in cancer: from bench to bedside. Adv Cancer Res 108:113–157

    Article  PubMed  CAS  Google Scholar 

  10. Dahiya N, Morin PJ (2010) MicroRNAs in ovarian carcinomas. Endocr Relat Cancer 17:F77–F89

    Article  PubMed  CAS  Google Scholar 

  11. Dhahbi JM, Atamna H, Boffelli D et al (2011) Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS One 6:e20509

    Article  PubMed  CAS  Google Scholar 

  12. Fabbri M, Croce CM, Calin GA (2009) MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk Lymphoma 50:160–170

    Article  PubMed  CAS  Google Scholar 

  13. Farazi TA, Horlings HM, Ten Hoeve J et al (2011) MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 71:4443–4453

    Article  PubMed  CAS  Google Scholar 

  14. Fendler A, Stephan C, Yousef GM, Jung K (2011) MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem 57:954–968

    Article  PubMed  CAS  Google Scholar 

  15. Fu X, Han Y, Wu Y et al (2011) Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest. doi 10.1111/j.1365–2362.2011.02535.x

  16. Gupta SK, Bang C, Thum T (2010) Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet 3:484–488

    Article  PubMed  CAS  Google Scholar 

  17. Hasemeier B, Christgen M, Kreipe H, Lehmann U (2008) Reliable microRNA profiling in routinely processed formalin-fixed paraffin-embedded breast cancer specimens using fluorescence labelled bead technology. BMC Biotechnol 8:90

    Article  PubMed  Google Scholar 

  18. Hong L, Han Y, Li S et al (2010) The malignant phenotype-associated microRNA in gastroenteric, hepatobiliary and pancreatic carcinomas. Expert Opin Biol Ther 10:1693–1701

    Article  PubMed  CAS  Google Scholar 

  19. Hussein K, Büsche G, Muth M et al (2011) Expression of myelopoiesis-associated microRNA in bone marrow cells of atypical chronic myeloid leukaemia and chronic myelomonocytic leukaemia. Ann Hematol 90:307–313

    Article  PubMed  CAS  Google Scholar 

  20. Hussein K, Theophile K, Büsche G et al (2010) Aberrant microRNA expression pattern in myelodysplastic bone marrow cells. Leuk Res 34:1169–1174

    Article  PubMed  CAS  Google Scholar 

  21. Hussein K, Theophile K, Dralle W et al (2009) MicroRNA expression profiling of megakaryocytes in primary myelofibrosis and essential thrombocythemia. Platelets 20:391–400

    Article  PubMed  CAS  Google Scholar 

  22. Jazbutyte V, Thum T (2010) MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11:926–935

    Article  PubMed  CAS  Google Scholar 

  23. Kontorovich T, Levy A, Korostishevsky M et al (2010) Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer 127:589–597

    Article  PubMed  CAS  Google Scholar 

  24. Kozomara A, Griffiths-Jones S (2011) iRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  PubMed  Google Scholar 

  25. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  26. Lehmann U, Hasemeier B, Christgen M et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J Pathol 214:17–24

    Article  PubMed  CAS  Google Scholar 

  27. Li J, Smyth P, Flavin R et al (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 7:36

    Article  PubMed  Google Scholar 

  28. Lin PY, Yu SL, Yang PC (2010) MicroRNA in lung cancer. Br J Cancer 103:1144–1148

    Article  PubMed  CAS  Google Scholar 

  29. Lorenzen JM, Haller H, Thum T (2010) MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol 7:286–294

    Article  Google Scholar 

  30. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  31. Mesri EA, Cesarman E, Boshoff C (2011) Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer 10:707–719

    Article  Google Scholar 

  32. Mueller DW, Bosserhoff AK (2010) The evolving concept of ‚melano-miRs’-microRNAs in melanomagenesis. Pigment Cell Melanoma Res 23:620–626

    Article  PubMed  CAS  Google Scholar 

  33. Osman A, Fälker K (2011) Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets. doi 10.3109/09537104.2011.560305

  34. Pallante P, Visone R, Croce CM, Fusco A (2010) Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer 17:F91–F104

    Article  PubMed  CAS  Google Scholar 

  35. Potapova A, Albat C, Hasemeier B et al (2011) Systematic cross-validation of 454 sequencing and pyrosequencing for the exact quantification of DNA methylation patterns with single CpG resolution. BMC Biotechnol 11:6

    Article  PubMed  CAS  Google Scholar 

  36. Purow B (2010) The elephant in the room: do microRNA-based therapies have a realistic chance of succeeding for brain tumors such as glioblastoma? J Neurooncol 103:429–436

    Article  PubMed  Google Scholar 

  37. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  38. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    Article  PubMed  CAS  Google Scholar 

  39. Starczynowski DT, Kuchenbauer F, Argiropoulos B et al (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16:49–58

    Article  PubMed  CAS  Google Scholar 

  40. Krol AR van der, Mur LA, Lange P de et al (1990) Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14:457–466

    Article  PubMed  Google Scholar 

  41. Venturini L, Battmer K, Castoldi M et al (2007) Expression of the miR-17–92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109:4399–4405

    Article  PubMed  CAS  Google Scholar 

  42. Votavova H, Grmanova M, Dostalova Merkerova M (2011) Differential expression of microRNAs in CD34+ cells of 5q- syndrome. J Hematol Oncol 4:1

    Article  PubMed  CAS  Google Scholar 

  43. Wu BH, Xiong XP, Jia J, Zhang WF (2011) MicroRNAs: New actors in the oral cancer scene. Oral Oncol 47:314–319

    Article  PubMed  CAS  Google Scholar 

  44. Zheng ZM (2010) Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci 6:730–755

    Article  PubMed  CAS  Google Scholar 

  45. Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Dank an meine Mentoren Prof. Hans Kreipe und insbesondere Prof. Oliver Bock, die mein Interesse an der Pathobiologie der microRNA sehr gefördert haben.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hussein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussein, K. Pathobiologie des microRNA-Systems. Pathologe 33, 70–78 (2012). https://doi.org/10.1007/s00292-011-1469-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-011-1469-4

Schlüsselwörter

Keywords

Navigation