Skip to main content
Log in

MR imaging of spleen in beta-thalassemia major

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

Splenomegaly and splenic siderosis are well-known findings in beta-thalassemia major. We explored the relation between splenic size, splenic and hepatic siderosis in transfusion-dependent beta-thalassemic patients, assessed by MR imaging.

Materials and methods

Abdominal MR imaging studies of 47 consecutive thalassemic patients and 10 healthy subjects, used as controls, were retrospectively reviewed. The signal intensity ratios of spleen and liver to the right paraspinous muscle (S/M, L/M, respectively) were calculated on T1, intermediate, and T2*-weighted gradient-echo sequences, splenic volume was estimated on axial images and serum ferritin levels were recorded.

Results

Decreased S/M on all MR sequences was displayed in 36 patients. Six patients presented with normal S/M on all MR sequences and 5 patients displayed splenic hypointensity only on T2* sequence. No correlation between S/M and L/M was found whereas both L/M and S/M correlated with serum ferritin (< 0.03). Splenic volume correlated to L/M (< 0.05) but not to S/M values.

Conclusion

In transfusion-dependent patients with beta-thalassemia, iron deposition in spleen cannot be predicted by the degree of hepatic siderosis, whereas splenomegaly relates to liver, but not splenic, iron overload. MR imaging can be a valuable tool in elucidating iron kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weatherall DJ, Clegg JB, Na-Nakorn S, et al. (1969) The pattern of disordered haemoglobin synthesis in homozygous and heterozygous b-thalassemia. Br J Haematol 16:251–267

    Article  CAS  PubMed  Google Scholar 

  2. Kattamis C, Metaxotou-Mavromati A, Ladis V, et al. (1982) The clinical phenotype of beta and delta beta thalassemias in Greece. Eur J Pediatr 139:135–138

    Article  CAS  PubMed  Google Scholar 

  3. Gabutti V, Piga A (1996) Results of long term iron chelating therapy. Acta Haematol 95:26–36

    Article  CAS  PubMed  Google Scholar 

  4. Gandon Y, Guyader D, Heautot JF, et al. (1994) Hemochromatosis: diagnosis and quantification of liver iron with gradient echo MR imaging. Radiology 193:533–538

    Article  CAS  PubMed  Google Scholar 

  5. Ernst O, Sergent G, Bonvarlet P, et al. (1997) Hepatic iron overload: diagnosis and quantification with MR imaging. AJR 168:1205–1208

    Article  CAS  PubMed  Google Scholar 

  6. Papakonstantinou OG, Maris TG, Kostaridou V, et al. (1995) Assessment of liver iron overload by T2-quantitative magnetic resonance imaging: correlation with serum ferritin concentration and histologic grading of siderosis. Magn Reson Imaging 13:967–977

    Article  CAS  PubMed  Google Scholar 

  7. Fenzi A, Bortolazzi M, Marzola P (2003) Comparison between signal-to-noise ratio, liver-to-muscle ratio and 1/T2 for the noninvasive assessment of liver iron content by MRI. J Magn Reson Imaging 17:589–592

    Article  PubMed  Google Scholar 

  8. Alustiza JM, Artetxe J, Castiella A, et al. (2004) Gipuzkoa hepatic iron concentration by MRI study group MR quantification of hepatic iron concentration. Radiology 230:479–484

    Article  PubMed  Google Scholar 

  9. Gandon Y, Olivie D, Guyader D, et al. (2004) Non-invasive assessment of hepatic iron stores by MRI. Lancet 363:357–362

    Article  CAS  PubMed  Google Scholar 

  10. Jensen PD (2004) Evaluation of iron overload. Br J Haematol 124:697–711

    Article  CAS  PubMed  Google Scholar 

  11. St Pierre TG, Clark PR, Chua-Anusorn W, et al. (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861

    Article  CAS  PubMed  Google Scholar 

  12. Anderson LJ, Westwood MA, Holden S, et al. (2004) Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: a prospective study using T2* cardiovascular magnetic resonance. Br J Haematol 127:348–355

    Article  CAS  PubMed  Google Scholar 

  13. Westwood M, Anderson LJ, Firmin DN, et al. (2003) A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 8:33–39

    Article  Google Scholar 

  14. Argyropoulou MI, Metafratzi Z, Kiortsis DN, et al. (2000) T2 relaxation rate as an index of pituitary iron overload in patients with beta-thalassemia major. Am J Roentgenol 75:1567–1569

    Article  Google Scholar 

  15. Midiri M, Lo Casto A, Sparacia G, et al. (1999) MR imaging of pancreatic changes in patients with transfusion dependent beta-thalassemia major. AJR 173:187–192

    Article  CAS  PubMed  Google Scholar 

  16. Drakonaki E, Papakonstantinou O, Maris T, et al. (2005) Adrenal glands in beta-thalassemia major: magnetic resonance (MR) imaging features and correlation with iron stores. Eur Radiol 15:2462–2468

    Article  PubMed  Google Scholar 

  17. Papakonstantinou O, Maris TG, Kostaridou S, et al. (2005) Abdominal lymphadenopathy in beta-thalassemia: MRI features and correlation with liver iron overload and posttransfusion chronic hepatitis C. AJR 185:219–224

    Article  PubMed  Google Scholar 

  18. Gomori JM, Grossman RI, Drott HR (1988) MR relaxation times and iron content of thalassemic spleens: an in virto study. AJR 150:567–569

    Article  CAS  PubMed  Google Scholar 

  19. Ooi GC, Khong PL, Chan GC, et al. (2004) Magnetic resonance screening of iron status in transfusion-dependent beta-thalassemia patients. Br J Haematol 124:385–390

    Article  CAS  PubMed  Google Scholar 

  20. Yoon DY, Choi BI, Han JK, et al. (1994) MR findings of secondary hemochromatosis: transfusional versus erythropoetic. J Comput Assist Tomogr 18:416–419

    Article  CAS  PubMed  Google Scholar 

  21. Siegelman ES, Mitchell DG, Rubin R, et al. (1991) Parenchymal versus reticuloendothelial iron overload in the liver: distinction with MR imaging. Radiology 179:361–366

    Article  CAS  PubMed  Google Scholar 

  22. Siegelman ES, Mitchell DG, Semelka RC (1996) Abdominal iron deposition: metabolism, MR findings and clinical importance. Radiology 199:13–22

    Article  CAS  PubMed  Google Scholar 

  23. Prassopoulos P, Daskalogiannaki M, Raissaki M, et al. (1997) Determination of normal splenic volume on computed tomography in relation to age, gender and body habitus. Eur Radiol 7:246–248

    Article  CAS  PubMed  Google Scholar 

  24. Geraghty EM, Boone JM, McGahan JP, et al. (2004) Normal organ volume assessment from abdominal CT. Abdom Imaging 29:482–490

    Article  CAS  PubMed  Google Scholar 

  25. Cazzola M, Borgna-Pignatti C, de Stefano P, et al. (1983) Internal distribution of excess iron and sources of serum ferritin in patients with thalassemia. Scand J Haematol 30:289–296

    Article  CAS  PubMed  Google Scholar 

  26. Gomori JM, Horev G, Tamary H, et al. (1991) Hepatic iron overload: quantitative MR imaging. Radiology 179:367–369

    Article  CAS  PubMed  Google Scholar 

  27. Johnston DL, Rice L, Vick EW, et al. (1989) Assessment of tissue iron overload by nuclear magnetic resonance imaging. Am J Med 87:40–47

    Article  CAS  PubMed  Google Scholar 

  28. Tanimoto A, Oshio K, Suematsu M, et al. (2001) Relaxation effects of clustered particles. J Magn Reson Imaging 14:72–77

    Article  CAS  PubMed  Google Scholar 

  29. Tanimoto A, Pouliquen D, Kreft BP, et al. (1994) Effects of spatial distribution on proton relaxation enhancement by particulate iron oxide. J Magn Reson Imaging 4:653–657

    Article  CAS  PubMed  Google Scholar 

  30. Argyropoulou MI, Kiortsis DN, Efremidis SC (2003) MRI of the liver and the pituitary gland in patients with beta-thalassemia major: does hepatic siderosis predict pituitary iron deposition? Eur Radiol 13:12–16

    Article  PubMed  Google Scholar 

  31. Martins R, Picanco I, Fonseca A, et al. (2004) The role of HFE mutations on iron metabolism in beta-thalassemia carriers. J Hum Genet 49:651–655

    Article  CAS  PubMed  Google Scholar 

  32. Melis MA, Cau M, Deidda F, et al. (2002) H63D mutation in the HFE gene increases iron overload in beta-thalassemia carriers. Haematologica 87:242–245

    CAS  PubMed  Google Scholar 

  33. Katz DS (1999) Splenic extramedullary hematopoiesis: large focal lesion in a patient with thalassemia. AJR 173:1715–1716

    Article  CAS  PubMed  Google Scholar 

  34. Gabata T, Kadoya M, Mori A, et al. (2000) MR imaging of focal extramedullary hematopoiesis in polycythemia vera: case report. Abdom Imaging 25:514–516

    Article  CAS  PubMed  Google Scholar 

  35. Karpathios T, Antypas A, Dimitiriou P, et al. (1982) Spleen size changes in children with homozygous beta-thalassaemia in relation to blood transfusion. Scand J Haematol 28:220–226

    Article  CAS  PubMed  Google Scholar 

  36. Tassiopoulos T, Rombos Y, Konstantopoulos K, et al. (1995) Spleen size in beta-thalassaemia heterozygotes. Haematologia (Budap) 26:205–209

    CAS  Google Scholar 

  37. Piomelli S (1995) The management of patients with Cooley’s anemia: transfusions and splenectomy. Semin Hematol 32:262–268

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olympia Papakonstantinou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papakonstantinou, O., Drakonaki, E.E., Maris, T. et al. MR imaging of spleen in beta-thalassemia major. Abdom Imaging 40, 2777–2782 (2015). https://doi.org/10.1007/s00261-015-0461-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0461-5

Keywords

Navigation