Skip to main content
Log in

Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dietary starch that escapes digestion in the small intestine may serve as a carbon source for bacterial fermentation in the distal intestine. This study aimed to compare the bacterial community in the ileal and cecal digesta of growing pigs fed diets with low (0.14, LR pigs) and high (0.43, HR pigs) amylose/amylopectin ratio. Pyrosequencing based on MiSeq 2000 platform showed that in ileum digesta, Bacteroidetes of LR pigs was markedly higher than that in HR pigs (P < 0.05). Megasphaera and Prevotella were the two most predominant genera in LR pigs, and Prevotella was significantly higher in LR pigs than in HR pigs (P < 0.05). Prevotella was predominant in cecal samples from both LR and HR pigs, although no significant differences were found between the two groups. In the ileum, Megasphaera elsdenii and Mitsuokella multacida were significantly (P < 0.01) higher in LR pigs along with an increase of acetate and butyrate concentrations. Halomonas pacifica, Escherichia fergusonii, and Actinobacillus minor which belong to class Gammaproteobacteria were significantly lower (P < 0.01) in HR pigs with a significant increase (P < 0.01) of Lactobacillus acetotolerans-like bacteria. Therefore, the changed bacterial community may lead to a transformation of microbial function, such as the alteration of fermentation mode which is showed on the change of microbial metabolites like the concentration of short-chain fatty acids (SCFAs), to a response to the switch of dietary composition, and in turn, to help host absorb and utilize nutrients efficiently. The increase of dietary amylose induced the reduction of conditioned pathogens which may probably be due to the increase of some probiotics such as Lactobacillus, thus reducing the risk of intestinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. P Natl Acad Sci USA 101(44):15718–15723

    Article  Google Scholar 

  • Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl Environ Microb 77(11):3846–3852

    Article  CAS  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil. ISME J 5(5):908–917

  • Bindelle J, Pieper R, Leterme P, Rossnagel B, Van Kessel A (2010) Changes in intestinal microbial ecophysiology as related to the carbohydrate composition of barleys and oats cultivars in an in vitro model of the pig gastrointestinal tract. Livest Sci 133(1):151–153

    Article  Google Scholar 

  • Birt DF, Boylston T, Hendrich S, Jane J-L, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M (2013) Resistant starch: promise for improving human health. Adv Nutr: Int Rev J 4(6):587–601

    Article  CAS  Google Scholar 

  • Cani PD, Delzenne NM (2007) Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr 10(6):729–734

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad Sci USA 108(Suppl 1):4516–4522

    Article  CAS  Google Scholar 

  • Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 8(12):2369–2379

    Article  CAS  PubMed  Google Scholar 

  • Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. doi:10.1093/nar/gkq873

    PubMed Central  PubMed  Google Scholar 

  • Cox E, Cools V, Thoonen H, Hoorens J, Houvenaghel A (1988) Effect of experimentally-induced villus atrophy on adhesion of K88ac-positive Escherichia coli in just-weaned piglets. Vet Microbiol 17(2):159–169

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Franklin M, Mathew A, Vickers J, Clift R (2002) Characterization of microbial populations and volatile fatty acid concentrations in the jejunum, ileum, and cecum of pigs weaned at 17 vs 24 days of age. J Anim Sci 80(11):2904–2910

    CAS  PubMed  Google Scholar 

  • Haenen D, da Silva CS, Zhang J, Koopmans SJ, Bosch G, Vervoort J, Gerrits WJ, Kemp B, Smidt H, Müller M (2013) Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs. J Nutr 143(12):1889–1898

    Article  CAS  PubMed  Google Scholar 

  • Han G-Q, Xiang Z-T, Yu B, Chen D-W, Qi H-W, Mao X-B, Chen H, Mao Q, Huang Z-Q (2012) Effects of different starch sources on Bacillus spp. in intestinal tract and expression of intestinal development related genes of weanling piglets. Mol Biol Rep 39(2):1869–1876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez-Doria JD, Sperandio V (2013) Nutrient and chemical sensing by intestinal pathogens. Microbes Infect 15(12):759–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horn N (1987) Clostridium disporicum sp. nov., a saccharolytic species able to form two spores per cell, isolated from a rat cecum. Int J Syst Bacteriol 37(4):398–401

    Article  Google Scholar 

  • Jha R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P (2011) In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Anim Feed Sci Tech 163(2):185–193

    Article  CAS  Google Scholar 

  • Jiang X, Li B, Su Y, Zhu W (2013) Shifts in bacterial community compositions during in vitro fermentation of amylopectin and resistant starch by colonic inocula of pigs. J Food Nutr Res 1(6):156–163

    Google Scholar 

  • Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lafiandra D, Riccardi G, Shewry PR (2014) Improving cereal grain carbohydrates for diet and health. J Cereal Sci 59(3):312–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee K-A, Kim S-H, Kim E-K, Ha E-M, You H, Kim B, Kim M-J, Kwon Y, Ryu J-H, Lee W-J (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153(4):797–811

    Article  CAS  PubMed  Google Scholar 

  • Leitch E, Walker AW, Duncan SH, Holtrop G, Flint HJ (2007) Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9(3):667–679

    Article  PubMed  Google Scholar 

  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microb 68(2):673–690

    Article  CAS  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed Central  PubMed  Google Scholar 

  • Mathew MJ, Subramanian G, Nguyen T-T, Robert C, Mediannikov O, Fournier P-E, Raoult D (2012) Genome sequence of Diplorickettsia massiliensis, an emerging ixodes ricinus-associated human pathogen. J Bacteriol 194(12):3287–3287

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

  • Pang X, Hua X, Yang Q, Ding D, Che C, Cui L, Jia W, Bucheli P, Zhao L (2007) Inter-species transplantation of gut microbiota from human to pigs. ISME J 1(2):156–162

    Article  CAS  PubMed  Google Scholar 

  • Pieper R, Bindelle J, Rossnagel B, Van Kessel A, Leterme P (2009) Effect of carbohydrate composition in barley and oat cultivars on microbial ecophysiology and proliferation of Salmonella enterica in an in vitro model of the porcine gastrointestinal tract. Appl Environ Microb 75(22):7006–7016

    Article  CAS  Google Scholar 

  • Pieper R, Jha R, Rossnagel B, Van Kessel AG, Souffrant WB, Leterme P (2008) Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets. FEMS Microbiol Ecol 66(3):556–566

    Article  CAS  PubMed  Google Scholar 

  • Prabhu R, Altman E, Eiteman MA (2012) Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microb 78(24):8564–8570

    Article  CAS  Google Scholar 

  • Pryde SE, Richardson AJ, Stewart CS, Flint HJ (1999) Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. Appl Environ Microb 65(12):5372–5377

    CAS  Google Scholar 

  • Purwani EY, Purwadaria T, Suhartono MT (2012) Fermentation RS3 derived from sago and rice starch with Clostridium butyricum BCC B2571 or Eubacterium rectale DSM 17629. Anaerobe 18(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Regmi PR, Metzler-Zebeli BU, Gänzle MG, van Kempen TA, Zijlstra RT (2011a) Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs. J Nutr 141(7):1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Regmi PR, van Kempen TA, Matte JJ, Zijlstra RT (2011b) Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs. J Nutr 141(3):398–405

    Article  CAS  PubMed  Google Scholar 

  • Relman DA (2012) Microbiology: learning about who we are. Nature 486(7402):194–195

    Article  CAS  PubMed  Google Scholar 

  • Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB (2004) Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 80(2):348–356

    CAS  PubMed  Google Scholar 

  • Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2013) The influence of diet on the gut microbiota. Pharmacol Res 69(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Dartois A, Kaur L (2010) Starch digestibility in food matrix: a review. Trends Food Sci Tech 21(4):168–180

    Article  CAS  Google Scholar 

  • Tsukahara T, Koyama H, Okada M, Ushida K (2002) Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 132(8):2229–2234

    CAS  PubMed  Google Scholar 

  • Urbaityte R, Riemensperger A, Pasteiner S (2011) Dietary acidifiers enhance growth rate of weaned pigs. Manipulating Pig Prod, XIII

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A (2010) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5(2):220–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Walter J, Ley R (2011) The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol 65(4):411–429

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73(16):5261–5267

    Article  CAS  Google Scholar 

  • Wang X, Conway PL, Brown IL, Evans AJ (1999) In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Appl Environ Microb 65(11):4848–4854

    CAS  Google Scholar 

  • Xiang Z, Qi H, Han G, Liu J, Huang Z, Yu B, Chen D (2011) Real-time TaqMan polymerase chain reaction to quantify the effects of different sources of dietary starch on Bifidobacterium in the intestinal tract of piglets. Afr J Biotechnol 10(25):5059–5067

    CAS  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Z, Wright A-DG (2014) Terrestrial vertebrate animal metagenomics, domesticated caprinae encyclopedia of metagenomics. Springer, pp 1-13

  • Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6(8):1535–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microb 64(10):3854–3859

    CAS  Google Scholar 

Download references

Authors’ contributions

Yu-heng Luo conducted the research and wrote the paper, Can Yang conducted the animal trial, André-Denis G. Wright also helped to write and to revise the paper, Jun He and Dai-wen Chen designed the study. Dai-wen Chen had primary responsibility for the final content. All authors read and approved the final manuscript.

Compliance with ethical standards

Funding

This study was funded by the China Postdoctoral Science Foundation (grant number 2013M542286) and the National Natural Science Foundation of China (grant number 31301987).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-wen Chen.

Electronic supplementary material

ESM 1

(PDF 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Yh., Yang, C., Wright, AD.G. et al. Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs. Appl Microbiol Biotechnol 99, 10627–10638 (2015). https://doi.org/10.1007/s00253-015-6917-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6917-2

Keywords

Navigation