Skip to main content
Log in

Broad Diversity and Newly Cultured Bacterial Isolates from Enrichment of Pig Feces on Complex Polysaccharides

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

One of the fascinating functions of mammalian intestinal microbiota is fermentation of plant cell wall components. Eight-week continuous culture enrichments of pig feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 575 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented in the bacterial isolates: Firmicutes (242), Bacteroidetes (185), Proteobacteria (65), Fusobacteria (55), Actinobacteria (23), and Synergistetes (5). The majority of the bacterial isolates had ≥97 % similarity to cultured bacteria with sequences in the RDP, but 179 isolates represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families of Lachnospiraceae, Enterococcaceae, Staphylococcaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, Bacteroides ovatus, and B. xylanisolvens. Many of the Firmicutes and Bacteroidetes isolates were identified as species that possess enzymes that ferment plant cell wall components, and the rest likely support these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 30 % of the isolates not represented in culture, there are new opportunities to study genomic and metabolic capacities of these members of the complex intestinal microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allison MJ, Robinson IM, Bucklin JA, Booth GD (1979) Comparison of bacterial populations of the pig cecum and colon based upon enumeration with specific energy sources. Appl Environ Microbiol 37:1142–1151

    PubMed  CAS  Google Scholar 

  2. Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagemomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106:1948–1953

    Article  PubMed  CAS  Google Scholar 

  3. Castillo M, Skene G, Roca M, Anguita M, Badiola I, Duncan SH, Flint HJ, Martín-Orúe SM (2007) Application of 16S rRNA gene-targeted fluorescence in situ hybridization and restriction fragment length polymorphism to study porcine microbiota along the gastrointestinal tract in response to different sources of dietary fiber. FEMS Microbiol Ecol 59:138–146

    Article  PubMed  CAS  Google Scholar 

  4. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrel DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  PubMed  CAS  Google Scholar 

  5. Collins MD, Lawson PA, Willems A, Cordoba JJ, Frenandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  PubMed  CAS  Google Scholar 

  6. Cotta MA, Whitehead TR, Zeltwanger RL (2003) Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ Microbiol 5:737–745

    Article  PubMed  CAS  Google Scholar 

  7. Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerström R, Mättö J, Saarele M, Mattila-Sandholm T, Poutanen K (2002) In vitro fermentation of cereal dietary fiber carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    Article  CAS  Google Scholar 

  8. Dai Z-L, Zhang J, Wu G, Zhu W-Y (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215

    Article  PubMed  CAS  Google Scholar 

  9. Durmic Z, Pethick DW, Pluske JR, Hampson DJ (1998) Changes in bacterial populations in the colon of pigs fed different sources of dietary fibre, and the development of swine diysentery after experimental infection. J Appl Microbiol 85:574–582

    Article  PubMed  CAS  Google Scholar 

  10. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagemone library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  PubMed  CAS  Google Scholar 

  11. Furet J-P, Firmesse O, Gourmelon M, Bridonneau C, Tap J, Mondot S, Doré J, Corthier G (2009) Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol Ecol 68:351–352

    Article  PubMed  CAS  Google Scholar 

  12. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Ligget CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  PubMed  CAS  Google Scholar 

  13. Högberg A, Lindberg JE, Leser T, Wallgren P (2004) Influence of cereal non-starch polysaccharides on ileo-caecal and rectal microbial populations in growing pigs. Acta Vet Scand 45:87–98

    Article  PubMed  Google Scholar 

  14. Karlsson FH, Ussery DW, Nielsen J, Nookaew I (2011) A closer look at Bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Microb Ecol 61:473–485

    Article  PubMed  Google Scholar 

  15. Kass ML, Van Soest PJ, Pond WG (1980) Utilization of dietary fiber from alfalfa by growing swine. II. Volatile fatty acid concentrations in and disappearance from the gastrointestinal tract. J Anim Sci 50:192–197

    CAS  Google Scholar 

  16. Konstantinov SR, Zhu W-Y, Williams BA, Tamminga S, de Vos WM, Akkermans ADL (2003) Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol Ecol 43:225–235

    Article  PubMed  CAS  Google Scholar 

  17. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  PubMed  CAS  Google Scholar 

  18. Lamendella R, Santo Domingo SW, Ghosh S, Martinson J, Oerther DB (2011) Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 11:103 (http//www.biomedcentral.com/1471-2180/11/103)

    Google Scholar 

  19. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–163

    Google Scholar 

  20. Lederberg J, Lederberg EM (1952) Replicate plating and indirect selection of bacterial mutants. J Bacteriol 63:399–406

    PubMed  CAS  Google Scholar 

  21. Leedle JAZ, Hespell RB (1980) Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl Environ Microbiol 39:709–719

    PubMed  CAS  Google Scholar 

  22. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona R, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    Article  PubMed  CAS  Google Scholar 

  23. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds with in worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  PubMed  CAS  Google Scholar 

  24. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  25. Lineback DR (1999) The chemistry of complex carbohydrates. In: Cho SS, Prosky L, Dreher M (eds) Complex carbohydrates in foods. Marcel Dekker, New York, pp 115–129

    Google Scholar 

  26. Macfarlane GT, Allison C, Gibson SAW, Cummings JH (1988) Contribution of the microflora to proteolysis in the human large intestine. J Appl Bacteriol 64:37–46

    Article  PubMed  CAS  Google Scholar 

  27. Maki M, Leung KT, Qin W (2009) The prospects of cellulose-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  PubMed  CAS  Google Scholar 

  28. Marchandin H, Damay A, Roudière L, Teyssier C, Zorgniotti I, Dechaud H, Jean-Pierre H, Jumas-Bilak E (2010) Phylogeny, diversity and host specialization in the phylum Synergistetes with emphasis on strains and clones of human origin. Res Microbiol 161:91–100

    Article  PubMed  CAS  Google Scholar 

  29. Martens EC, Low EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI (2011) Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9:e1001221. doi:10.1371/journal.pbio.1001221

    Article  PubMed  CAS  Google Scholar 

  30. Metzler-Zebeli BU, Hooda S, Pieper R, Zijlstra RT, van Kessel AG, Mosenthin R, Gänzle MG (2010) Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract. Appl Microbiol Biotechnol 76:3692–3701

    CAS  Google Scholar 

  31. Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E (2010) Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 87:2097–2105

    Article  PubMed  CAS  Google Scholar 

  32. Pond WG (1987) Thoughts on fiber utilization in swine. J Anim Sci 65:497–499

    PubMed  CAS  Google Scholar 

  33. Palop MLL, Valles S, Piñaga F, Flors A (1989) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int J Syst Bacteriol 39:68–71

    Article  Google Scholar 

  34. Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, Konkel ME, Angly F, Dinsdale EA, Edwards RA, Nelson KE, White BA (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3:e2945. doi:10.1371/journal/.pone.0002945

    Article  PubMed  Google Scholar 

  35. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Sci 311:484–489

    Article  CAS  Google Scholar 

  36. Reŕat A, Fiszlewicz M, Giusi A, Vaugelade P (1987) Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty acids in the digestive tract of conscious pigs. J Anim Sci 64:448–456

    PubMed  Google Scholar 

  37. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M-J, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63

    Article  PubMed  CAS  Google Scholar 

  38. Salyers AA (1979) Energy sources of major intestinal fermentative anaerobes. Am J Clin Nutr 32:158–163

    PubMed  CAS  Google Scholar 

  39. Salyers AA, Vercellotti JR, West SHE, Wilkens TD (1977) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33:319–322

    PubMed  CAS  Google Scholar 

  40. Sankar M, Delgado O, Mattiasson B (2003) Isolation and characterization of solvenogenic, cellulase-free xylanolytic Clostridia from cow rumen. Water Sci Technol 48:185–188

    PubMed  CAS  Google Scholar 

  41. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbio 71:1501–1506

    Article  CAS  Google Scholar 

  42. Schwarz WH (2001) the cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  PubMed  CAS  Google Scholar 

  43. Schwarz WH, Zverlov VV, Bahl H (2004) Extracellular glycosyl hydrolases from Clostridia. Adv Appl Microbiol 56:215–261

    Article  PubMed  CAS  Google Scholar 

  44. Shah HN, Olsen I, Bernard K, Finegold SM, Gharbia S, Gupta RS (2009) Approaches to the study of the systematic of anaerobic, Gram-negative, non-sporeforming rods: current status and perspectives. Anaerobe 15:179–194

    Article  PubMed  CAS  Google Scholar 

  45. Slade AP, Wyatt GM, Bayliss CE, Waites WM (1987) Comparison of populations of faecal bacteria before and after in vitro incubation with plant cell wall substrates. J Appl Bacteriol 62:231–240

    Article  PubMed  CAS  Google Scholar 

  46. Van Laere KMJ, Hartemink R, Bosveld M, Schols HA, Voragen AGJ (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 48:1644–1652

    Article  PubMed  Google Scholar 

  47. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Defense Advanced Research Projects Agency as part of its Intestinal Fortitude Program to C.J. Ziemer. The author would like to thank Todd Atherly, Kerrie Franzen, and John Tenhundfeld for technical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherie J. Ziemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemer, C.J. Broad Diversity and Newly Cultured Bacterial Isolates from Enrichment of Pig Feces on Complex Polysaccharides. Microb Ecol 66, 448–461 (2013). https://doi.org/10.1007/s00248-013-0185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0185-4

Keywords

Navigation