Skip to main content
Log in

The N-Terminal Half of the Connexin Protein Contains the Core Elements of the Pore and Voltage Gates

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Connexins form channels with large aqueous pores that mediate fluxes of inorganic ions and biological signaling molecules. Studies aimed at identifying the connexin pore now include a crystal structure that provides details of putative pore-lining residues that need to be verified using independent biophysical approaches. Here we extended our initial cysteine-scanning studies of the TM1/E1 region of Cx46 hemichannels to include TM2 and TM3 transmembrane segments. No evidence of reactivity was observed in either TM2 or TM3 probed with small or large thiol-modifying reagents. Several identified pore residues in E1 of Cx46 have been verified in different Cx isoforms. Use of variety of thiol reagents indicates that the connexin hemichannel pore is large and flexible enough, at least in the extracellular part of the pore funnel, to accommodate uncommonly large side chains. We also find that that gating characteristics are largely determined by the same domains that constitute the pore. These data indicate that biophysical and structural studies are converging towards a view that the N-terminal half of the Cx protein contains the principal components of the pore and gating elements, with NT, TM1 and E1 forming the pore funnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bennett MV, Barrio LC, Bargiello TA, Spray DC, Hertzberg E, Saez JC (1991) Gap junctions: new tools, new answers, new questions. Neuron 6:305–320

    Article  PubMed  CAS  Google Scholar 

  • Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60

    Article  PubMed  CAS  Google Scholar 

  • Bukauskas FF, Bukauskiene A, Bennett MV, Verselis VK (2001) Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophys J 81:137–152

    Article  PubMed  CAS  Google Scholar 

  • Duffy HS, Delmar M, Spray DC (2002) Formation of the gap junction nexus: binding partners for connexins. J Physiol Paris 96:243–249

    Article  PubMed  CAS  Google Scholar 

  • Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14

    Article  PubMed  CAS  Google Scholar 

  • Goldberg GS, Valiunas V, Brink PR (2004) Selective permeability of gap junction channels. Biochim Biophys Acta 1662:96–101

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  • Harris AL, Spray DC, Bennett MV (1981) Kinetic properties of a voltage-dependent junctional conductance. J Gen Physiol 77:95–117

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Ma M, Dahl G (2006) Conductance of connexin hemichannels segregates with the first transmembrane segment. Biophys J 90:140–150

    Article  PubMed  CAS  Google Scholar 

  • Janecke AR, Hennies HC, Gunther B, Gansl G, Smolle J, Messmer EM, Utermann G, Rittinger O (2005) GJB2 mutations in keratitis-ichthyosis-deafness syndrome including its fatal form. Am J Med Genet A 133:128–131

    Google Scholar 

  • Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    Article  PubMed  CAS  Google Scholar 

  • Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK (2003a) Pore-lining residues identified by single channel SCAM studies in Cx46 hemichannels. Cell Commun Adhes 10:193–199

    PubMed  CAS  Google Scholar 

  • Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK (2003b) Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels. J Gen Physiol 122:389–405

    Article  PubMed  CAS  Google Scholar 

  • Kwon T, Harris AL, Rossi A, Bargiello TA (2011) Molecular dynamics simulations of the Cx26 hemichannel: evaluation of structural models with Brownian dynamics. J Gen Physiol 138:475–493

    Article  PubMed  CAS  Google Scholar 

  • Lee JR, Derosa AM, White TW (2009) Connexin mutations causing skin disease and deafness increase hemichannel activity and cell death when expressed in Xenopus oocytes. J Invest Dermatol 129:870–878

    Article  PubMed  CAS  Google Scholar 

  • Locke D, Bian S, Li H, Harris AL (2009) Post-translational modifications of connexin26 revealed by mass spectrometry. Biochem J 424:385–398

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T (2009) Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458:597–602

    Article  PubMed  CAS  Google Scholar 

  • Moreno AP, Chanson M, Elenes S, Anumonwo J, Scerri I, Gu H, Taffet SM, Delmar M (2002) Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating. Circ Res 90:450–457

    Article  PubMed  CAS  Google Scholar 

  • Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J (2005) Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434:83–88

    Article  PubMed  CAS  Google Scholar 

  • Oh S, Verselis VK, Bargiello TA (2008) Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel. J Physiol 586:2445–2461

    Article  PubMed  CAS  Google Scholar 

  • Purnick PE, Oh S, Abrams CK, Verselis VK, Bargiello TA (2000) Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32. Biophys J 79:2403–2415

    Article  PubMed  CAS  Google Scholar 

  • Ri Y, Ballesteros JA, Abrams CK, Oh S, Verselis VK, Weinstein H, Bargiello TA (1999) The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions. Biophys J 76:2887–2898

    Article  PubMed  CAS  Google Scholar 

  • Sanchez HA, Mese G, Srinivas M, White TW, Verselis VK (2010) Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40 V and G45E mutations that cause keratitis ichthyosis deafness syndrome. J Gen Physiol 136:47–62

    Article  PubMed  CAS  Google Scholar 

  • Skerrett IM, Aronowitz J, Shin JH, Cymes G, Kasperek E, Cao FL, Nicholson BJ (2002) Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol 159:349–360

    Article  PubMed  CAS  Google Scholar 

  • Spray DC, Harris AL, Bennett MV (1981) Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol 77:77–93

    Article  PubMed  CAS  Google Scholar 

  • Srinivas M, Costa M, Gao Y, Fort A, Fishman GI, Spray DC (1999) Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J Physiol (Lond) 517:673–689

    Article  CAS  Google Scholar 

  • Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK (2005) Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J 88:1725–1739

    Article  PubMed  CAS  Google Scholar 

  • Tong JJ, Ebihara L (2006) Structural determinants for the differences in voltage gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels. Biophys J 91:2142–2154

    Article  PubMed  CAS  Google Scholar 

  • Tong JJ, Liu X, Dong L, Ebihara L (2004) Exchange of gating properties between rat cx46 and chicken cx45.6. Biophys J 87:2397–2406

    Article  PubMed  CAS  Google Scholar 

  • Trexler EB, Bennett MV, Bargiello TA, Verselis VK (1996) Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA 93:5836–5841

    Article  PubMed  CAS  Google Scholar 

  • Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK (2000) The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J 79:3036–3051

    Article  PubMed  CAS  Google Scholar 

  • Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568:459–468

    Article  PubMed  CAS  Google Scholar 

  • Veenstra RD, Wang HZ, Beblo DA, Chilton MG, Harris AL, Beyer EC, Brink PR (1995) Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ Res 77:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Verselis VK (2009) The connexin channel pore: pore-lining segments and residues. In: Harris AL, Locke D (eds) Connexins: a guide. Humana Press, New York, pp 77–102

    Chapter  Google Scholar 

  • Verselis VK, Veenstra R (2000) Gap junction channels permeability and voltage gating advances in molecular and cell biology. In: Hertzberg EL (ed) Gap junctions. Elsevier, Stamford, pp 129–192

    Chapter  Google Scholar 

  • Verselis VK, Ginter CS, Bargiello TA (1994) Opposite voltage gating polarities of two closely related connexins. Nature 368:348–351

    Article  PubMed  CAS  Google Scholar 

  • Verselis VK, Trelles MP, Rubinos C, Bargiello TA, Srinivas M (2009) Loop gating of connexin hemichannels involves movement of pore-lining residues in the first extracellular loop domain. J Biol Chem 284:4484–4493

    Article  PubMed  CAS  Google Scholar 

  • Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973

    Article  PubMed  CAS  Google Scholar 

  • White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell 3:711–720

    PubMed  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  CAS  Google Scholar 

  • Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Luebke A, Dahl G (1997) Identification of a pore lining segment in gap junction hemichannels. Biophys J 72:1946–1953

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Ross Johnson for many thoughtful discussions and guidance over the years, particularly on critical evaluation of studies regarding connexin pores. This study was supported by NIH Grants GM54179 to V.K.V and EY13869 to M. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vytas K. Verselis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronengold, J., Srinivas, M. & Verselis, V.K. The N-Terminal Half of the Connexin Protein Contains the Core Elements of the Pore and Voltage Gates. J Membrane Biol 245, 453–463 (2012). https://doi.org/10.1007/s00232-012-9457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9457-z

Keywords

Navigation