Skip to main content
Log in

Glutathione Modulates Ca2+ Influx and Oxidative Toxicity Through TRPM2 Channel in Rat Dorsal Root Ganglion Neurons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Glutathione (GSH) is the most abundant thiol antioxidant in mammalian cells and maintains thiol redox in the cells. GSH depletion has been implicated in the neurobiology of sensory neurons. Because the mechanisms that lead to melastatin-like transient receptor potential 2 (TRPM2) channel activation/inhibition in response to glutathione depletion and 2-aminoethyldiphenyl borinate (2-APB) administration are not understood, we tested the effects of 2-APB and GSH on oxidative stress and buthionine sulfoximine (BSO)-induced TRPM2 cation channel currents in dorsal root ganglion (DRG) neurons of rats. DRG neurons were freshly isolated from rats and the neurons were incubated for 24 h with BSO. In whole-cell patch clamp experiments, TRPM2 currents in the rat were consistently induced by H2O2 or BSO. TRPM2 channels current densities and cytosolic free Ca2+ content of the neurons were higher in BSO and H2O2 groups than in control. However, the current densities and cytosolic Ca2+ release were also higher in the BSO + H2O2 group than in the H2O2 alone. When intracellular GSH is introduced by pipette TRPM2 channel currents were not activated by BSO, H2O2 or rotenone. BSO and H2O2-induced Ca2+ gates were blocked by the 2-APB. Glutathione peroxidase activity, lipid peroxidation and GSH levels in the DRG neurons were also modulated by GSH and 2-APB inhibition. In conclusion, we observed the protective role of 2-APB and GSH on Ca2+ influx through a TRPM2 channel in intracellular GSH depleted DRG neurons. Since cytosolic glutathione depletion is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altinkilic S, Nazıroğlu M, Uğuz AC, Özcankaya R (2010) Fish oil and antipsychotic risperidone modulates oxidative stress in PC12 cell line membranes through regulation of calcium ion release and antioxidant system. J Membr Biol 235:211–218

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interac 111–112:1–14

    Article  Google Scholar 

  • Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204–214

    Article  PubMed  CAS  Google Scholar 

  • Bao L, Avshalumov MV, Rice ME (2005) Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci 26:10029–10040

    Article  Google Scholar 

  • Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494

    Article  PubMed  Google Scholar 

  • Bubber P, Tang J, Haroutunian V, Xu H, Davis KL, Blass JP, Gibson GE (2004) Mitochondrial enzymes in schizophrenia. J Mol Neurosci 24:315–321

    Article  PubMed  CAS  Google Scholar 

  • Cabungcal JH, Preissmann D, Delseth C, Cuénod M, Do KQ, Schenk F (2007) Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: relevance to schizophrenia. Neurobiol Dis 26:634–645

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE (2007) SnapShot: mammalian TRP channels. Cell 129:220

    Article  PubMed  Google Scholar 

  • Espino J, Mediero M, Bejarano I, Lozano GM, Ortiz A, García JF, Rodríguez AB, JçA Pariente (2009) Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients. Rep Biol Endocrinol 7:11

    Article  Google Scholar 

  • Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723

    Article  PubMed  CAS  Google Scholar 

  • Freestone PS, Chung KK, Guatteo E, Mercuri NB, Nicholson LF, Lipski J (2009) Acute action of rotenone on nigral dopaminergic neurons—involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 30:1849–1859

    Article  PubMed  Google Scholar 

  • Grupe M, Myers G, Penner R, Fleig A (2010) Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium 48:1–9

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz C, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006) Mitochondrial calcium signaling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    Article  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    Article  PubMed  CAS  Google Scholar 

  • Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat beta-cell line RIN-5F. Cell Calcium 39:487–494

    Article  PubMed  CAS  Google Scholar 

  • Kühn FJ, Kühn C, Naziroglu M, Lückhoff A (2009) Role of an N-terminal splice segment in the activation of the cation channel TRPM2 by ADP-ribose and hydrogen peroxide. Neurochem Res 34:227–233

    Article  PubMed  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochim Biophys Res Commun 71:952–958

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36:355–366

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Lückhoff A (2008a) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci 270:152–158

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Lückhoff A (2008b) A calcium influx pathway regulated separately by oxidative stress and ADP-Ribose in TRPM2 channels: single channel events. Neurochem Res 33:1256–1262

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Kutluhan S, Yılmaz M (2008) Selenium and topiramate modulates oxidative stress and Ca2+-ATPase, EEG records in pentylentetrazol-induced brain seizures in rats. J Membr Biol 225:39–49

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Özgül M, Çelik Ö, Çiğ B, Sözbir E (2011) Aminoethoxydiphenyl borate and flufenamic acid inhibit Ca2+ influx through TRPM2 channels in rat dorsal root ganglion neurons activated by ADP-ribose and rotenone. J Membr Biol 241:69–75

    Article  PubMed  Google Scholar 

  • Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological fluids. Anal Biochem 16:359–364

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr, McKay RR (1999) Capacitative calcium entry. Bioessays 21:38–46

    Article  PubMed  Google Scholar 

  • Salazar M, Pariente JA, Salido GM, González A (2008a) Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes. Toxicology 244:280–291

    Article  PubMed  CAS  Google Scholar 

  • Salazar M, Pariente JA, Salido GM, González A (2008b) Ethanol induces glutamate secretion by Ca2+ mobilization and ROS generation in rat hippocampal astrocytes. Neurochem Int 52:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM, Rosati G (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 20:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Sedlak J, Lindsay RHC (1968) Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmann’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Shimizu E, Hashimoto K, Komatsu N, Iyo M (2002) Roles of endogenous glutathione levels on 6-hydroxydopamine-induced apoptotic neuronal cell death in human neuroblastoma SK-N-SH cells. Neuropharmacology 43:434–443

    Article  PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  PubMed  CAS  Google Scholar 

  • Staaf S, Franck MC, Marmigère F, Mattsson JP, Ernfors P (2010) Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Exp Patterns 10:65–74

    Article  CAS  Google Scholar 

  • Steullet P, Neijt HC, Cuénod M, Do KQ (2006) Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience 137:807–819

    Article  PubMed  CAS  Google Scholar 

  • Togashi K, Inada H, Tominaga M (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153:1324–1330

    Article  PubMed  CAS  Google Scholar 

  • Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells via regulation of caspase-3, -9 and calcium influx. J Membr Biol 232:15–23

    Article  PubMed  Google Scholar 

  • Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD (2001) Selenium and the brain: a review. Nutr Neurosci 4:81–97

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

There is no financial support for the study. There is no conflict of interest in the current study. The authors wish to thank Dr. Peter J. Butterworth (Life Sciences, King’s College, London, UK) for polishing the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazıroğlu, M., Özgül, C., Çiğ, B. et al. Glutathione Modulates Ca2+ Influx and Oxidative Toxicity Through TRPM2 Channel in Rat Dorsal Root Ganglion Neurons. J Membrane Biol 242, 109–118 (2011). https://doi.org/10.1007/s00232-011-9382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9382-6

Keywords

Navigation