Skip to main content
Log in

Melatonin Reduces Apoptosis Induced by Calcium Signaling in Human Leukocytes: Evidence for the Involvement of Mitochondria and Bax Activation

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We have evaluated the effect of melatonin on apoptosis evoked by increases in [Ca2+] c in human leukocytes. Our results show that treatment of neutrophils with the calcium mobilizing agonist FMLP or the specific inhibitor of calcium reuptake thapsigargin induced a transient increase in [Ca2+] c . Our results also show that FMLP and thapsigargin increased caspase-9 and -3 activities and the active forms of both caspases. The effect of FMLP and thapsigargin on caspase activation was time-dependent. Similar results were obtained when lymphocytes were stimulated with thapsigargin. This stimulatory effect was accompanied by induction of mPTP, activation of the proapoptotic protein Bax and release of cytochrome c. However, when leukocytes were pretreated with melatonin, all of the apoptotic features indicated above were significantly reversed. Our results suggest that melatonin reduces caspase-9 and -3 activities induced by increases in [Ca2+] c in human leukocytes, which are produced through the inhibition of both mPTP and Bax activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuña-Castroviejo D, Escames G, Rodríguez MI, López LC (2007) Melatonin role in the mitochondrial function. Front Biosci 12:947–963

    Article  PubMed  Google Scholar 

  • Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18:869–871

    CAS  PubMed  Google Scholar 

  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345:271–278

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Barriga C, Madrid JA, Terrón MP, Rial RV, Cubero J, Paredes SD, Sánchez S, Rodríguez AB (2005) The pineal gland: functional connection between melatonin and immune system in birds. In: Collin C, Minami M, Parvez H, Saito H, Parvez S, Qureshi GA, Reiss C (eds) Advances in neuroregulation & neuroprotection. VSP, Leiden, pp 239–268

    Google Scholar 

  • Bejarano I, Terrón MP, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2007) Hydrogen peroxide increases the phagocytic function of human neutrophils by calcium mobilisation. Mol Cell Biochem 296:77–84

    Article  CAS  PubMed  Google Scholar 

  • Bejarano I, Lozano GM, Ortiz A, García JF, Paredes SD, Rodríguez AB, Pariente JA (2008) Caspase 3 activation in human spermatozoa in response to hydrogen peroxide and progesterone. Fertil Steril 90:1340–1347

    Article  CAS  PubMed  Google Scholar 

  • Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400

    Article  CAS  PubMed  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol 287:C817–C833

    Article  CAS  Google Scholar 

  • Chen HM, Hsu JT, Chen JC, Ng CJ, Chiu DF, Chen MF (2005) Delayed neutrophil apoptosis attenuated by melatonin in human acute pancreatitis. Pancreas 31:360–364

    Article  CAS  PubMed  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  PubMed  Google Scholar 

  • Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis—the calcium connection. Science 300:65–67

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Zhang JT (2004) Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 37:1790–1801

    Article  CAS  PubMed  Google Scholar 

  • Genestier AL, Michallet MC, Prévost G, Bellot G, Chalabreysse L, Peurol S, Thivolet F, Etienne J, Lina G, Vallette FM, Vandenesch F, Genestier L (2005) Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J Clin Invest 115:3117–3127

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko JV, Gerasimenko OV, Palejwala A, Tepikin AV, Petersen OH, Watson AJM (2002) Menadione-induced apoptosis: roles of cytosolic Ca2+ elevations and the mitochondrial permeability transition pore. J Cell Sci 115:485–497

    CAS  PubMed  Google Scholar 

  • Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S (2001) Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem 276:19066–19071

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hajnoczky G, Davis E, Madesh M (2003) Calcium and apoptosis. Biochem Biophys Res Commun 304:445–454

    Article  CAS  PubMed  Google Scholar 

  • Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Roy SS, Yi M (2006) Mitochondrial calcium signaling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    Article  CAS  PubMed  Google Scholar 

  • Harms C, Lautenschlager M, Bergk A, Freyer D, Weih M, Dirnagl U, Weber JR, Hortnagl H (2000) Melatonin is protective in necrotic but not in caspase-dependent, free radical-independent apoptotic neuronal cell death in primary neuronal cultures. FASEB J 14:1814–1824

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195:468–477

    Article  CAS  PubMed  Google Scholar 

  • Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST (2004) Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res 37:55–70

    Article  CAS  PubMed  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  • Kunduzova OR, Escourrou G, Seguelas MH, Delagrande P, De la Farge F, Cambon C, Parini A (2003) Prevention of apoptotic and necrotic cell death, caspase-3 activation, and renal dysfunction by melatonin after ischemia/reperfusion. FASEB J 17:872–874

    CAS  PubMed  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  • López JJ, Salido GM, Pariente JA, Rosado JA (2008) Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost 6:1780–1788

    Article  PubMed  Google Scholar 

  • Luchetti F, Canonico B, Curci R, Battistelli M, Mannello F, Papa S, Tarzia G, Falcieri E (2006) Melatonin prevents apoptosis induced by UV-B treatment in U937 cell line. J Pineal Res 40:158–167

    Article  CAS  PubMed  Google Scholar 

  • Luchetti F, Canonico B, Mannello F, Masoni C, D’Emilio A, Battistelli M, Papa S, Falcieri E (2007) Melatonin reduces early changes in intramitochondrial cardiolipin during apoptosis in U937 cell line. Toxicol In Vitro 21:293–301

    Article  CAS  PubMed  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2035

    Article  CAS  PubMed  Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  • Otton R, da Silva DO, Campoio TR, Silveira LR, de Souza MO, Hatanaka E, Curi R (2007) Non-esterified fatty acids and human lymphocyte death: a mechanism that involves calcium release and oxidative stress. J Endocrinol 195:133–143

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa P (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734

    Article  CAS  PubMed  Google Scholar 

  • Petrosillo G, Fattoretti P, Matera M, Ruggiero FM, Bertoni-Freddari C, Paradies G (2008) Melatonin prevents age-related mitochondrial dysfunction in rat brain via caridiolipin protection. Rejuvenation Res 11:935–943

    Article  CAS  PubMed  Google Scholar 

  • Petrosillo G, Colantuono G, Moro N, Ruggiero FM, Tiravanti E, Di Venosa N, Fiore T, Paradies G (2009a) Melatonin protects against heart ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Physiol 297:H1487–H1493

    CAS  Google Scholar 

  • Petrosillo G, Moro N, Ruggiero FM, Paradies G (2009b) Melatonin inhibits cardiolipin peroxidation in mitochondrial and prevents the mitochondrial permeability transition and cytochrome c release. Free Radic Biol Med 47:969–974

    Article  CAS  PubMed  Google Scholar 

  • Phillips DC, Martins S, Doyle BT, Houghton JA (2007) Sphingosine-induced apoptosis in rhabdomyosarcoma cell lines is dependent on pre-mitochondrial Bax activation and post-mitochondrial caspases. Cancer Res 67:756–764

    Article  CAS  PubMed  Google Scholar 

  • Radogna F, Cristofanon S, Paternoster L, D’Alessio M, De Nicola M, Cerella C, Dicato M, Diederich M, Ghibelli L (2008) Melatonin antagonizes the intrinsic pathway of apoptosis via mitocondrial targeting of Bcl-2. J Pineal Res 44:316–325

    Article  CAS  PubMed  Google Scholar 

  • Rao RV, Ellerb HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez AB, Marchena JM, Nogales G, Durán J, Barriga C (1999) Correlation between melatonin, phagocytosis and superoxide anion levels in ring dove heterophils. J Pineal Res 26:35–42

    Article  PubMed  Google Scholar 

  • Rodríguez AB, Barriga C, Paredes SD, Terrón MP (2005) Age, melatonin and the immune system. In: Pandalai SG (ed) Recent research developments in cellular and molecular biochemistry. Research Signpost, Kerale, pp 255–287

    Google Scholar 

  • Rosado JA, López JJ, Gómez-Arteta E, Redondo PC, Salido GM, Pariente JA (2006) Early caspase-3 activation independent of apoptosis is required for cellular function. J Cell Physiol 209:142–152

    Article  CAS  PubMed  Google Scholar 

  • Sainz RM, Mayo JC, Rodríguez C, Tan DX, López-Burillo S, Reiter RJ (2003) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 60:1407–1426

    Article  CAS  PubMed  Google Scholar 

  • Shen YX, Xu SY, Wei W, Wang XL, Wang H, Sun X (2002) Melatonin blocks rat hippocampal neuronal apoptosis induced by amyloid beta-peptide 25–35. J Pineal Res 32:163–167

    Article  CAS  PubMed  Google Scholar 

  • Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    Article  CAS  PubMed  Google Scholar 

  • Stamm C, Friehs I, Cowan DB, Cao-Danh H, Choi YH, Duebener LF, McGowan FX, del Nido PJ (2002) Dopamine treatment of postischemic contractile dysfunction rapidly induces calcium-dependent pro-apoptotic signaling. Circulation 106:290–298

    Google Scholar 

  • Stennicke HT, Salvesen GS (1997) Biochemical characteristics of capase-3, -6, -7, and -8. J Biol Chem 272:25719–25723

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocrine J 1:57–60

    Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  • Yoo YM, Yim SV, Kim SS, Jang HY, Lea HZ, Hwang GC, Kim JW, Kim SA, Lee HJ, Kim CJ, Chung JH, Leem KH (2002) Melatonin suppresses NO-induced apoptosis via induction of Bcl-2 expression in PGT-beta inmortalised pineal cells. J Pineal Res 33:146–150

    Article  CAS  PubMed  Google Scholar 

  • Zong WX, Hatzvassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    Article  CAS  PubMed  Google Scholar 

  • Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochem Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  • Zou H, Li Y, Liu X, Wang X (1999) An APAF-1–cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by MEC-DGI and Junta de Extremadura grants BFU2007-60091 and PRI07-A024, respectively. I. B. received a grant from Junta de Extremadura (PRE06070). P. C. R. is supported by the MEC-Ramón & Cajal program (RYC-2007-00349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Pariente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espino, J., Bejarano, I., Redondo, P.C. et al. Melatonin Reduces Apoptosis Induced by Calcium Signaling in Human Leukocytes: Evidence for the Involvement of Mitochondria and Bax Activation. J Membrane Biol 233, 105–118 (2010). https://doi.org/10.1007/s00232-010-9230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9230-0

Keywords

Navigation