Skip to main content
Log in

Mechanism and Putative Structure of B0-like Neutral Amino Acid Transporters

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The Na+-dependent transport of neutral amino acids in epithelial cells and neurons is mediated by B0-type neutral amino acid transporters. Two B0-type amino acid transporters have been identified in the neurotransmitter transporter family SLC6, namely B0AT1 (SLC6A19) and B0AT2 (SLC6A15). In contrast to other members of this family, B0-like transporters are chloride-independent. B0AT1 and B0AT2 preferentially bind the substrate prior to the Na+-ion. The Na+-concentration affects the K m of the substrate and vice versa. A kinetic scheme is proposed that is consistent with the experimental data. An overlapping binding site of substrate and cosubstrate has been demonstrated in the bacterial orthologue LeuT Aa from Aquifex aeolicus, which elegantly explains the mutual effect of substrate and cosubstrate on each other’s K m -value. LeuT Aa is sequence-related to transporters of the SLC6 family, allowing homology modeling of B0-like transporters along its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

BCH:

2-aminobicyclo[2,2,1]heptane-2-carboxylic acid

NMDG:

N-methyl-D-glucamine

References

  • Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Binder H.J. 1970. A comparison of intestinal and renal transport systems. Am. J. Clin. Nutr. 23:330–335

    PubMed  CAS  Google Scholar 

  • Bohme C., Broer A., Munzinger M., Kowalczuk S., Rasko J.E., Lang F., Broer S. 2005. Characterization of mouse amino acid transporter B0AT1 (slc6a19). Biochem. J. 389:745–751

    Article  PubMed  Google Scholar 

  • Broer A., Klingel K., Kowalczuk S., Rasko J.E., Cavanaugh J., Broer S. 2004. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem. 279:24467–24476

    Article  PubMed  CAS  Google Scholar 

  • Broer A., Tietze N., Kowalczuk S., Chubb S., Munzinger M., Bak L.K., Broer S. 2006. The orphan transporter v7–3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem. J. 393:421–430

    Article  PubMed  CAS  Google Scholar 

  • Camargo S.M., Makrides V., Virkki L.V., Forster I.C., Verrey F. 2005. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter. Pfluegers. Arch. 451:338–348

    Article  CAS  Google Scholar 

  • Cohen L.L., Huang K.C. 1964. Intestinal Transport Of Tryptophan And Its Derivatives. Am. J. Physiol. 206:647–652

    PubMed  CAS  Google Scholar 

  • Crane R.K. 1965. Na+ -dependent transport in the intestine and other animal tissues. Fed. Proc. 24:1000–1006

    PubMed  CAS  Google Scholar 

  • Curran P.F., Schultz S.G., Chez R.A., Fuisz R.E. 1967. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J. Gen. Physiol. 50:1261–1286

    Article  PubMed  CAS  Google Scholar 

  • Cusworth D.C., Dent C.E. 1960. Renal clearances of amino acids in normal adults and in patients with aminoaciduria. Biochem. J. 74:550–561

    PubMed  CAS  Google Scholar 

  • Doyle F.A., McGivan J.D. 1992. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles. Biochim. Biophys. Acta. 1104:55–62

    Article  PubMed  CAS  Google Scholar 

  • Evers J., Murer H., Kinne R. 1976. Phenylalanine uptake in isolated renal brush border vesicles. Biochim. Biophys. Acta. 426:598–615

    Article  PubMed  CAS  Google Scholar 

  • Fass S.J., Hammerman M.R., Sacktor B. 1977. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine. J. Biol. Chem. 252:583–590

    PubMed  CAS  Google Scholar 

  • Fox M., Thier S., Rosenberg L., Segal S. 1964. Ionic requirements for amino acid transport in the rat kidney cortex slice. I. Influence of extracellular ions. Biochim. Biophys. Acta. 79:167–176

    PubMed  CAS  Google Scholar 

  • Gouaux E., Mackinnon R. 2005. Principles of selective ion transport in channels and pumps. Science 310:1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Hoyer J., Gogelein H. 1991. Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording. J. Gen. Physiol. 97:1073–1094

    Article  PubMed  CAS  Google Scholar 

  • Kleta R., Romeo E., Ristic Z., Ohura T., Stuart C., Arcos-Burgos M., Dave M.H., Wagner C.A., Camargo S.R., Inoue S., et al. 2004. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat. Genet. 36:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Kragh-Hansen U., Roigaard-Petersen H., Jacobsen C., Sheikh M.I. 1984. Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanine- and glucose-transport systems. Biochem. J. 220:15–24

    PubMed  CAS  Google Scholar 

  • Mircheff A.K., Kippen I., Hirayama B., Wright E.M. 1982. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles. J. Membrane. Biol. 64:113–122

    Article  CAS  Google Scholar 

  • Murer H., Sigrist-Nelson K., Hopfer U. 1975. On the mechanism of sugar and amino acid interaction in intestinal transport. J. Biol. Chem. 250:7392–7396

    PubMed  CAS  Google Scholar 

  • Nelson N., Sacher A., Nelson H. 2002. The significance of molecular slips in transport systems. Nature Rev. Mol. Cell. Biol. 3:876–881

    Article  CAS  Google Scholar 

  • Palacin M., Nunes V., Font-Llitjos M., Jimenez-Vidal M., Fort J., Gasol E., Pineda M., Feliubadalo L., Chillaron J., Zorzano A. 2005. The genetics of heteromeric amino acid transporters. Physiology (Bethesda) 20:112–124

    CAS  Google Scholar 

  • Paterson J.Y., Sepulveda F.V., Smith M.W. 1979. Two-carrier influx of neutral amino acids into rabbit ileal mucosa. J. Physiol. 292:339–350

    PubMed  CAS  Google Scholar 

  • Paterson J.Y., Sepulveda F.V., Smith M.W. 1981. Distinguishing transport systems having overlapping specificities for neutral and basic amino acids in the rabbit ileum. J. Physiol. 319:345–354

    PubMed  CAS  Google Scholar 

  • Potter S.J., Lu A., Wilcken B., Green K., Rasko J.E. 2002. Hartnup disorder: polymorphisms identified in the neutral amino acid transporter SLC1A5. J. Inherit. Metab. Dis. 25:437–448

    Article  PubMed  CAS  Google Scholar 

  • Preston R.L., Schaeffer J.F., Curran P.F. 1974. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum. J. Gen. Physiol. 64:443–467

    Article  PubMed  CAS  Google Scholar 

  • Reiser S., Christiansen P.A. 1967. Intestinal transport of valine as affected by ionic environment. Am. J. Physiol. 212:1297–1302

    PubMed  CAS  Google Scholar 

  • Samarzija I., Fromter E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pfluegers. Arch. 393:119–209

    CAS  Google Scholar 

  • Schultz S.G., Alvarez O.O., Curran P.F., Yu-Tu L. 1970. Dicarboxylic amino acid influx across brush border of rabbit ileum. Effects of amino acid charge on the sodium-amino acid interaction. J. Gen. Physiol. 56:621–639

    Article  PubMed  CAS  Google Scholar 

  • Schultz S.G, Curran P.F. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50:637–718

    PubMed  CAS  Google Scholar 

  • Schultz S.G., Curran P.F., Chez R.A., Fuisz R.E. 1967. Alanine and sodium fluxes across mucosal border of rabbit ileum. J. Gen. Physiol. 50:1241–1260

    Article  PubMed  CAS  Google Scholar 

  • Scriver C.R., Mohyuddin F. 1968. Amino acid transport in kidney. Heterogeneity of alpha-aminoisobutyric uptake. J. Biol. Chem. 243:3207–3213

    PubMed  CAS  Google Scholar 

  • Segal S., Crawhall J.C. 1968. Characteristics of cystine and cysteine transport in rat kidney cortex slices. Proc. Natl. Acad. Sci. USA 59:231–237

    Article  PubMed  CAS  Google Scholar 

  • Seow H.F., Broer S., Broer A., Bailey C.G., Potter S.J., Cavanaugh J.A., Rasko J.E. 2004. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat. Genet. 36:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Stein W.D. 1986. Transport and diffusion across cell membranes. San Diego: Academic Press

    Google Scholar 

  • Takanaga H., Mackenzie B., Peng J.B., Hediger M.A. 2005. Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in human brain. Biochem. Biophys. Res. Commun. 337:892–900

    Article  PubMed  CAS  Google Scholar 

  • Ullrich K.J., Rumrich G., Kloss S. 1974. Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pfluegers. Arch. 351:49–60

    Article  CAS  Google Scholar 

  • Yamashita A., Singh S.K., Kawate T., Jin Y., Gouaux E. 2005. Crystal structure of a bacterial homologue of Na(+)/Cl(−)-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Work in the laboratory of the authors is supported by grants from the Australian Research Council (ARC) and the National Health and Medical Research Council (NHMRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bröer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Mara, M., Oakley, A. & Bröer, S. Mechanism and Putative Structure of B0-like Neutral Amino Acid Transporters. J Membrane Biol 213, 111–118 (2006). https://doi.org/10.1007/s00232-006-0879-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0879-3

Keywords

Navigation