Skip to main content

Advertisement

Log in

Topology of the Type IIa Na+/Pi Cotransporter

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The type IIa Na+/Pi cotransporter (NaPi-IIa) plays a key role in the reabsorption of inorganic phosphate (Pi) in the renal proximal tubule. The rat NaPi-IIa isoform is a protein of 637 residues for which different algorithms predict 8–12 transmembrane domains (TMDs). Epitope tagging experiments demonstrated that both the N and the C termini of NaPi-IIa are located intracellularly. Site-directed mutagenesis revealed two N-glycosylation sites in a large putative extracellular loop. Results from structure-function studies suggested the assembly of two similar opposed regions that possibly constitute part of the substrate translocation pathway for one phosphate ion together with three sodium ions. Apart from these topological aspects, other structural features of NaPi-IIa are not known. In this study, we have addressed the topology of NaPi-IIa using in vitro transcription/translation of HK-M0 and HK-M1 fusion vectors designed to test membrane insertion properties of cDNA sequences encoding putative NaPi-IIa TMDs. Based on the results of in vitro transcription/translation analyses, we propose a model of NaPi-IIa comprising 12 TMDs, with both N and C termini orientated intracellularly and a large hydrophilic extracellular loop between the fifth and sixth TMDs. The proposed model is in good agreement with the prediction of the NaPi-IIa structure obtained by the hidden Markov algorithm HMMTOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bacconi A., Virkki L.V., Biber J., Murer H., Forster I.C. 2005. Renouncing electroneutrality is not free of charge: Switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc. Natl. Acad. Sci. USA. 102:12606–12611

    Article  PubMed  CAS  Google Scholar 

  • Bamberg K., Sachs G. 1994. Topological analysis of H+,K+-ATPase using in vitro translation. J. Biol. Chem. 269:16909–16919

    PubMed  CAS  Google Scholar 

  • Bayle D., Weeks D., Hallen S., Melchers K., Bamberg K., Sachs G. 1997a. In vitro translation analysis of integral membrane proteins. J. Recept. Signal Transduct. Res. 17:29–56

    Article  CAS  Google Scholar 

  • Bayle D., Weeks D., Sachs G. 1995. The membrane topology of the rat sarcoplasmic and endoplasmic reticulum calcium ATPases by in vitro translation scanning. J. Biol. Chem. 270:25678–25684

    Article  PubMed  CAS  Google Scholar 

  • Bayle D., Weeks D., Sachs G. 1997b. Identification of membrane insertion sequences of the rabbit gastric cholecystokinin-A receptor by in vitro translation. J. Biol. Chem. 272:19697–19707

    Article  CAS  Google Scholar 

  • Custer M., Lötscher M., Biber J., Murer H., Kaissling B. 1994. Expression of Na-Pi cotransport in rat kidney: Localization by RT-PCR and immunohistochemistry. Am. J. Physiol. 266:F767–F774

    PubMed  CAS  Google Scholar 

  • Forster I.C., Kohler K., Biber J., Murer H. 2002. Forging the link between structure and function of electrogenic cotransporters: The renal type IIa Na+/Pi cotransporter as a case study. Prog. Biophys. Mol. Biol. 80:69–108

    Article  PubMed  CAS  Google Scholar 

  • Gerelsaikhan T., Turner R.J. 2000. Transmembrane topology of the secretory Na+-K+-2Cl cotransporter NKCC1 studied by in vitro translation. J. Biol. Chem. 275:40471–40477

    Article  PubMed  CAS  Google Scholar 

  • Hallen S., Branden M., Dawson P.A., Sachs G. 1999. Membrane insertion scanning of the human ileal sodium/bile acid co-transporter. Biochemistry 38:11379–11388

    Article  PubMed  CAS  Google Scholar 

  • Hallen S., Mareninova O., Branden M., Sachs G. 2002. Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 41:7253–7266

    Article  PubMed  CAS  Google Scholar 

  • Hartmann E., Rapoport T.A., Lodish H.F. 1989. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA. 86:5786–5790

    Article  PubMed  CAS  Google Scholar 

  • Hayes G., Busch A., Lotscher M., Waldegger S., Lang F., Verrey F., Biber J., Murer H. 1994. Role of N-linked glycosylation in rat renal Na/Pi-cotransport. J. Biol. Chem. 269:24143–24149

    PubMed  CAS  Google Scholar 

  • Hirokawa T., Boon-Chieng S., Mitaku S. 1998. SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K., Stoffel W. 1993. Tm base-A database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374:166–170

    Google Scholar 

  • Klein P., Kanehisa M., DeLisi C. 1985. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta. 815:468–476

    Article  PubMed  CAS  Google Scholar 

  • Kohler K., Forster I.C., Stange G., Biber J., Murer H. 2002a. Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am. J. Physiol. 282:F687–F696

    CAS  Google Scholar 

  • Kohler K., Forster I.C., Stange G., Biber J., Murer H. 2002b. Transport function of the renal type IIa Na+/Pi cotransporter is codetermined by residues in two opposing linker regions. J. Gen. Physiol. 120:693–705

    Article  Google Scholar 

  • Kohler K., Forster I.C., Stange G., Biber J., Murer H. 2003. Essential cysteine residues of the type IIa Na+/Pi cotransporter. Pfluegers Arch. 446:203–210

    Google Scholar 

  • Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kyte J., Doolittle R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lambert G., Forster I.C., Stange G., Biber J., Murer H. 1999a. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na+/Pi cotransporter protein. J. Gen. Physiol. 114:637–652

    Article  CAS  Google Scholar 

  • Lambert G., Forster I.C., Stange G., Kohler K., Biber J., Murer H. 2001. Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na+/Pi cotransporter. J. Gen. Physiol. 117:533–546

    Article  PubMed  CAS  Google Scholar 

  • Lambert G., Traebert M., Biber J., Murer H. 2000. Cleavage of disulfide bonds leads to inactivation and degradation of the type IIa, but not type IIb, sodium phosphate cotransporter expressed in Xenopus laevis oocytes. J. Membr. Biol. 176:143–149

    Article  PubMed  CAS  Google Scholar 

  • Lambert G., Traebert M., Hernando N., Biber J., Murer H. 1999b. Studies on the topology of the renal type II NaPi-cotransporter. Pfluegers Arch. 437:972–978

    Article  CAS  Google Scholar 

  • Mareninova O., Shin J.M., Vagin O., Turdikulova S., Hallen S., Sachs G. 2005. Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry 44:13702–13712

    Article  PubMed  CAS  Google Scholar 

  • Melchers K., Weitzenegger T., Buhmann A., Steinhilber W., Sachs G., Schafer K.P. 1996. Cloning and membrane topology of a P type ATPase from Helicobacter pylori. J. Biol. Chem. 271:446–457

    Article  PubMed  CAS  Google Scholar 

  • Monne M., Hermansson M., von Heijne G. 1999. A turn propensity scale for transmembrane helices. J. Mol. Biol. 288:141–145

    Article  PubMed  CAS  Google Scholar 

  • Murer H., Forster I., Biber J. 2004. The sodium phosphate cotransporter family SLC34. Pfluegers Arch. 447:763–767

    Article  CAS  Google Scholar 

  • Pasquier C., Promponas V.J., Palaios G.A., Hamodrakas J.S., Hamodrakas S.J. 1999. A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: The PRED-TMR algorithm. Protein Eng. 12:381–385

    Article  PubMed  CAS  Google Scholar 

  • Segawa H., Kaneko I., Takahashi A., Kuwahata M., Ito M., Ohkido I., Tatsumi S., Miyamoto K. 2002. Growth-related renal type II Na/Pi cotransporter. J. Biol. Chem. 277:19665–19672

    Article  PubMed  CAS  Google Scholar 

  • Tatishchev S., Abuladze N., Pushkin A., Newman D., Liu W., Weeks D., Sachs G., Kurtz I. 2003. Identification of membrane topography of the electrogenic sodium bicarbonate cotransporter pNBC1 by in vitro transcription/translation. Biochemistry 42:755–765

    PubMed  CAS  Google Scholar 

  • Tusnady G.E., Simon I. 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  CAS  Google Scholar 

  • Virkki L.V., Forster I.C., Bacconi A., Biber J., Murer H. 2005. Functionally important residues in the predicted 3rd transmembrane domain of the type IIa sodium-phosphate co-transporter (NaPi-IIa). J. Membr. Biol. 206:227–238

    Article  PubMed  CAS  Google Scholar 

  • Virkki L.V., Murer H., Forster I.C. 2006. Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: Shedding light on substrate binding order. J. Gen. Physiol. 127:539–555

    Article  PubMed  CAS  Google Scholar 

  • Virkki, L.V., Murer H., Forster I.C. 2006a. Mapping conformational changes of a type IIb Na+/Pi cotransporter by voltage clamp fluorometry. J. Biol. Chem. 281:28837–28849

    Article  CAS  Google Scholar 

  • Werner A., Biber J., Forgo J., Palacin M., Murer H. 1990. Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. J. Biol. Chem. 265:12331–12336

    PubMed  CAS  Google Scholar 

  • Zizak M., Cavet M.E., Bayle D., Tse C.M., Hallen S., Sachs G., Donowitz M. 2000. Na+/H+ exchanger NHE3 has 11 membrane spanning domains and a cleaved signal peptide: Topology analysis using in vitro transcription/translation. Biochemistry 39:8102–8112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Ian C. Forster for critical comments on the manuscript. This work was financially supported by the Swiss National Funds (grant to H. M., 31.065397/02) and the Transregio-Sonderforschungsbereich (TR-SFB11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Biber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radanovic, T., Gisler, S.M., Biber, J. et al. Topology of the Type IIa Na+/Pi Cotransporter. J Membrane Biol 212, 41–49 (2006). https://doi.org/10.1007/s00232-006-0033-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0033-2

Keywords

Navigation