Skip to main content

Advertisement

Log in

Novel strategies for the treatment of inflammatory hyperalgesia

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

There is a large unmet medical need in the area of treatment of inflammatory pain initiated by tissue damage or inflammation that manifests as spontaneous pain and pain hypersensitivity (hyperalgesia).The current review focuses on the key mechanisms that produce hyperalgesia that accompanies inflammation. Also, the inflammatory mediators that interact with neurons to produce hyperalgesia are explored. As the dominant classes of analgesic drugs such as the NSAIDs and the opiates are limited by their side effects and tolerability, elucidation of the molecular mechanisms responsible for inflammatory pain provides novel opportunities for therapeutic approaches for managing inflammatory pain, with improved specificity, efficacy, and possibly with fewer toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Scholz J, Woolf CJ (2002) Can we conquer pain? Nat Neurosci 5:1062–1067

    Article  CAS  PubMed  Google Scholar 

  2. Melton L (2003) Osteoarthritis pain goes central. Lancet Neurol 2:524

    Article  PubMed  Google Scholar 

  3. Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4:S265–S272

    Article  PubMed  Google Scholar 

  4. Mili F, Helmick CG, Zack MM (2002) Prevalence of arthritis: analysis of data from the US behavioral risk factor surveillance system. J Rheumatol 29:1981–1988

    PubMed  Google Scholar 

  5. Schaible HG, Ebersberger AV, Banchet GS (2002) Mechanisms of pain in arthritis. Ann NY Acad Sci 966:343–354

    Article  CAS  PubMed  Google Scholar 

  6. McCulloch CA, Downey GP, El-Gabalawy H (2006) Signaling platforms that modulate the inflammatory response: new targets for drug development. Nat Rev Drug Dis 5:864–876

    Article  CAS  Google Scholar 

  7. Walter L, Stella N (2004) Cannabinoids and neuroinflammation. Br J Pharmacol 141:775–785

    Article  CAS  PubMed  Google Scholar 

  8. Simonnet G (2005) Opioids from analgesia to antihyperalgesia. Pain 118:8–9

    Article  PubMed  Google Scholar 

  9. Derle DV, Gujar KN, Sagar BS (2006) Adverse effects associated with the use of NSAIDS: an overview. Ind J Pharm Sci 68:4709–414

    Google Scholar 

  10. Scott DL, Kingsley GH (2006) Tumor necrosis factor inhibitors for rheumatoid arthritis. N Eng J Med 355:704–712

    Article  CAS  Google Scholar 

  11. Krishna V (2004) Inflammation and repair. In: Textbook of pathology. Orient Longman, Chennai, pp 52–93

  12. Burke A, Smyth E, Fitzgerald GA (2006) Analgesic-antipyretics agents: pharmacotherapy of gout. In: Brunton LL (ed) The pharmacological basis of therapeutics. McGraw Hill, New York, pp 671–694

    Google Scholar 

  13. Chopade AR, Awale SS, Naikwade NS (2009) Effects of neem leaf extract on acute and chronic inflammatory muscle hyperalgesia. J Pharm Res 2:541–544

    Google Scholar 

  14. Cotran RS, Kumar V, Collins T (2000) Acute and chronic inflammation. In: Saunders WB (ed) Pathologic basis of diseases, 6th ed. Thomson, India, pp 50–88

    Google Scholar 

  15. Basbaum AI (2002) Pain physiology: basic science. Can J Anesth 49:R1–R3

    Article  Google Scholar 

  16. Serhan CN, Chiang N (2004) Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution entrée for resoleomics. Rheum Dis Clin Nor Am 30:69–95

    Article  Google Scholar 

  17. Chopade AR, Nalawade AY, Naikwade NS (2006) Potentiation of thermal hyperalgesia by ACE inhibitors in sucrose treated mice. Curr Pharm Res J 1:79–83

    Google Scholar 

  18. Chopade AR, Pol RP, Awale SS, Naikwade NS (2006) Analgesics are they anxiolytics? As they attenuate anxiogenesis induced by carrageenan. Curr Pharm Res J 1:87–89

    Google Scholar 

  19. Coutaux A, Adam F, Willer JC, Le Bars D (2005) Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine 72:359–371

    Article  PubMed  Google Scholar 

  20. Gabay C, Kushner I (1999) Acute phase proteins and other systemic responses to inflammation. N Eng J Med 340:448–454

    Article  CAS  Google Scholar 

  21. McCleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856

    Article  CAS  PubMed  Google Scholar 

  22. Huwiler A, Pfeilschifter J (2009) Lipids as targets for novel anti-inflammatory therapies. Pharmacol Ther 124:96–112

    Article  CAS  PubMed  Google Scholar 

  23. Salamon E, Esch T, Stefano GB (2006) Pain and relaxation. Int J Mol Med 18:465–470

    CAS  PubMed  Google Scholar 

  24. Janicki PK, Jeske-Janicka M (1998) Relevance of nitric oxide in pain mechanisms and pain management. Curr Rev Pain 2:211–216

    Article  Google Scholar 

  25. Bolay H, Moskowitz MA (2002) Mechanisms of pain modulation in chronic syndromes. Neurol 59:S2–S7

    CAS  Google Scholar 

  26. Fields HL, Martin JB (2005) Pain: pathophysiology and management. In: Kasper DL (ed) Harrison’s principle of internal medicine, 16th ed. McGraw Hill, New York

    Google Scholar 

  27. Huang J, Zhang X, McNaughton PA (2006) Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 4:197–206

    Article  CAS  PubMed  Google Scholar 

  28. Chopade AR, Burade KB, Naikawade NS (2008) Hyperalgesic models: to study chronic pain effectively. Electron J Pharmacol 1:67–73

    Google Scholar 

  29. Dhawan BN, Cesselin F, Raghubir R (1996) Classification of opioid receptors. Pharmacol Rev 48:567–592

    CAS  PubMed  Google Scholar 

  30. Catherine M, Cahill S, Holdridge V, Morinville A (2007) Trafficking of d-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 28:23–31

    Article  CAS  Google Scholar 

  31. Xiao JX, Colpaert F, Weinsenfield-Halllin Z (2003) Opioids hyperalgesia and tolerance versus 5HT1A receptor mediated inverse tolerance. Trends Pharmacol Sci 24:634–639

    Google Scholar 

  32. Mao J, Sung B, Ji RR, Lim G (2002) Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J Neurosci 22:8312–8323

    CAS  PubMed  Google Scholar 

  33. Mao J, Price DD, Mayer DJ (1994) Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. J Neurosci 14:2301–2312

    CAS  PubMed  Google Scholar 

  34. Rainsford KD (2007) Anti-inflammatory drugs in the 21st century. Subcell Biochem 42:3–27

    Article  CAS  PubMed  Google Scholar 

  35. Rao P, Knaus EE (2008) Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharmaceut Sci 11:81s–110s

    Google Scholar 

  36. Turini ME, DuBois RN (2002) Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53:35–57

    Article  CAS  PubMed  Google Scholar 

  37. Davies NM, Reynolds JK, Undeberg MR, Gates BJ, Ohgami Y, Vega-Villa KR (2006) Minimizing risks of NSAIDs: cardiovascular, gastrointestinal and renal. Expert Rev Neurother 6:1643–1655

    Article  CAS  PubMed  Google Scholar 

  38. Nandave MD, Ojha SK, Arya DS (2006) Should selective cox-2 inhibitors be used more? Ind J Pharm Sci 68:281–285

    Article  CAS  Google Scholar 

  39. Ragsdale DR, Mcphee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state dependent block of sodium channels by local anaesthetics. Science 265:1724–1728

    Article  CAS  PubMed  Google Scholar 

  40. Rang HP, Dale MM, Ritter JM, Moore RK (2003) Pharmacology. Churchill Livingstone, Delhi, pp 244–251

    Google Scholar 

  41. Dray A (1992) Mechanism of action of capsaicin-like molecules on sensory neurons. Life Sci 51:1759–1765

    Article  CAS  PubMed  Google Scholar 

  42. Szallasi A (2002) Vanilloid (capsaicin) receptors in health and disease. Am J Clin Pathol 118:110–121

    Article  CAS  PubMed  Google Scholar 

  43. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  CAS  PubMed  Google Scholar 

  44. Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    CAS  PubMed  Google Scholar 

  45. Mason L, Moore RA, Derry S, Edwards JE, McQuay HJ (2004) Systematic review of topical capsaicin for the treatment of chronic pain. Br Med J 328:991

    Article  CAS  Google Scholar 

  46. Stahl SM (1998) Basic psychopharmacology of antidepressants. Part1: antidepressants have seven distinct mechanisms of action. J Clin Psych 59:5–14

    CAS  Google Scholar 

  47. Sawynok J, Esser MJ, Reid AR (2001) Antidepressants as analgesics: an overview of central and peripheral mechanisms of action. J Psych Neurosci 26:1–9

    Google Scholar 

  48. Mico JA, Ardid D, Berrocoso E, Eschalier A (2006) Antidepresants and pain. TRIPS 27:348–354

    CAS  Google Scholar 

  49. Chopade AR, Nalawade AY, Naikwade NS (2007) Comparative study of arylpropionic acid derivatives ketoprofen and naproxen on acute and chronic inflammatory muscle hyperalgesia. J Cell Tissue Res 7:1079–1084

    Google Scholar 

  50. Wright A, Sluka KA (2001) Nonpharmacological treatments for musculoskeletal pain. Clin J Pain 17:33–46

    Article  CAS  PubMed  Google Scholar 

  51. Kidd BL, Langford RM, Wodehouse T (2007) Current approaches in the treatment of arthritic pain. Arth Res Ther 9:214

    Article  CAS  Google Scholar 

  52. Cheing GL, Hui-Chan CW (2004) Would the addition of TENS to exercise training produce better physical performance outcomes in people with knee osteoarthritis than either intervention alone? Clin Rehab 18:487–497

    Article  Google Scholar 

  53. Zeilhofer HU, Brune K (2006) Analgesic strategies beyond the inhibition of cyclooxygenases. Trends Pharmacol Sci 27:467–474

    Article  CAS  PubMed  Google Scholar 

  54. Nakayama Y, Omote K, Kawamata T, Namiki A (2002) Role of prostaglandin receptor EP1 in the spinal dorsal horn in carrageenan-induced inflammatory pain. Anesth 97:1254–1262

    Article  CAS  Google Scholar 

  55. Zeilhofer HU (2007) Prostanoids in nociception and pain. Biochem Pharmacol 73:165–174

    Article  CAS  PubMed  Google Scholar 

  56. Murakami M, Kudo I (2004) Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res 43:3–35

    Article  CAS  PubMed  Google Scholar 

  57. Bock MG, Longmore J (2000) Bradykinin antagonists: new opportunities. Curr Opin Chem Biol 4:401–406

    Article  CAS  PubMed  Google Scholar 

  58. Sharma JN, Al-Dhalmawi GS (2003) Bradykinin receptor antagonists: therapeutic implications. Ind Drugs 6:581–586

    CAS  Google Scholar 

  59. Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–219

    CAS  PubMed  Google Scholar 

  60. Roberts LA, Connor M (2006) TRPV1 antagonists as a potential treatment for hyperalgesia; recent patents on CNS. Drug Dis 1:65–76

    CAS  Google Scholar 

  61. Cortright DN, Szallasi A (2004) Biochemical pharmacology of the vanilloid receptor TRPV1 an update. Eur J Biochem 271:1814–1819

    Article  CAS  PubMed  Google Scholar 

  62. Pandya NM, Jain SM, Santani DD (2007) Pathophysiological actions of protease activated receptors (PARs). Pharmazie 62:163–169

    CAS  PubMed  Google Scholar 

  63. Dale C, Vergnolle N (2008) Protease signaling to G protein-coupled receptors: implications for inflammation and pain. J Recept Signal Transduct Res 28:29–37

    Article  CAS  PubMed  Google Scholar 

  64. Ritter AM, Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Liberator P (2005) Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. PNAS 102:9382–9387

    Article  PubMed  CAS  Google Scholar 

  65. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  CAS  PubMed  Google Scholar 

  66. Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22:10277–10290

    CAS  PubMed  Google Scholar 

  67. Cummins TR, Sheets PL, Waxman SG (2007) The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131:243–257

    Article  CAS  PubMed  Google Scholar 

  68. Momin A, Wood JN (2008) Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol 18:383–388

    Article  CAS  PubMed  Google Scholar 

  69. Dib-Hajj SD, Binshtok AM, Cummins TR, Jarvis MF, Samad T, Zimmermann K (2009) Voltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment. Brain Res Rev 60:65–83

    Article  CAS  PubMed  Google Scholar 

  70. Hamilton SG, Warburton J, Bhattacharjee A, Ward J, McMahon SB (2000) ATP in human skin elicits a dose-related pain response under conditions of hyperalgesia. Brain 123:1238–1246

    Article  PubMed  Google Scholar 

  71. Chizh BA, Illes P (2000) P2X receptors and nociception. Pharmacol Rev 53:553–568

    Google Scholar 

  72. Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454

    Article  CAS  PubMed  Google Scholar 

  73. Maeda T, Kishioka S (2009) PPAR and pain. Int Rev Neurobiol 85:165–177

    Article  CAS  PubMed  Google Scholar 

  74. LoVerme J, Russo R, Rana GL, Fu J, Farthing J, Mattace-Raso G, Meli R, Hohmann A, Calignano A, Piomelli D (2006) Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor. J Pharmacol Exp Ther 319:1051–1061

    Article  CAS  PubMed  Google Scholar 

  75. Deng GM, Zheng L, Chan FK, Lenardo M (2005) Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat Med 11:1066–1072

    Article  CAS  PubMed  Google Scholar 

  76. Horai R, Nakajima A, Habiro K, Kotani M, Nakae S, Matsuki T, Nambu A, Shinobu S, Hayato K, Katsuko S, Akihiko O, Tanioka H, Ikuse T, Ishii N, Pamela L (2004) TNF-α is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist deficient mice. J Clin Invest 114:1603–1611

    CAS  PubMed  Google Scholar 

  77. Asarch A, Gottlieb AB, Lee J, Masterpol KS, Scheinman PL, Stadecker MJ, Massarotti EM, Bush ML (2009) Lichen planus-like eruptions: an emerging side effect of tumor necrosis factor-a antagonists. J Am Acad Dermatol 61:104–111

    Article  PubMed  Google Scholar 

  78. Maini RN, Taylor PC (2000) Anticytokine therapy for rheumatoid arthiritis. Annu Rev Med 51:207–229

    Article  CAS  PubMed  Google Scholar 

  79. Loram LA, Fuller L, Fick T, Cartmell S, Poole D, Mitchell D (2007) Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain 8:127–136

    Article  CAS  PubMed  Google Scholar 

  80. Lequerre T, Vittecoq O, le Loet X (2007) What is the role for interleukin-1 receptor antagonist in rheumatic disease? Joint Bone Spine 74:223–226

    Article  PubMed  Google Scholar 

  81. Fiorucci S (2001) NO releasing NSAIDS are capase inhibitors. Trends Immunol 22:232–235

    Article  CAS  PubMed  Google Scholar 

  82. Hattori Y, Kasai K, Gross SS (2004) NO suppresses while peroxynitrite sustains NF-kB: a paradigm to rationalize cytoprotective and cytotoxic actions attributed to NO. Cardiovasc Res 63:31–40

    Article  CAS  PubMed  Google Scholar 

  83. Wallace JL (1993) Gastric ulceration: critical events at the neutrophil-endothelium interface. Can J Physiol Pharmacol 71:98–102

    CAS  PubMed  Google Scholar 

  84. Parada CA, Tambeli CH, Cunha FQ, Ferreira SH (2001) The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neurosci 102:937–944

    Article  CAS  Google Scholar 

  85. Radhakrishnan R, Sluka KA (2005) Acetazolamide, a carbonic anhydrase inhibitor, reverses inflammation induced thermal hyperalgesia in rats. J Exp Pharmacol Ther 313:921–927

    Article  CAS  Google Scholar 

  86. Giet M, Tölle M, Kleuser B (2008) Relevance and potential of sphingosine-1-phosphate in vascular inflammatory disease. Biol Chem 389:1381–1390

    Article  PubMed  CAS  Google Scholar 

  87. Xu TL, Duan B (2009) Calcium-permeable acid-sensing ion channel in nociceptive plasticity: a new target for pain control. Prog Neurobiol 87:171–180

    Article  CAS  PubMed  Google Scholar 

  88. Kumar RN, Chambers WA, Pertwee RG (2001) Pharmacological actions and therapeutic uses of cannabis and cannabinoids. Anaesth 56:1059–1068

    Article  CAS  Google Scholar 

  89. Walter L, Stella N (2004) Cannabinoids and neuroinflammation. Br J Pharmacol 141:775–785

    Article  CAS  PubMed  Google Scholar 

  90. Degroot A, Nomikos GM (2007) In vivo neurochemical effects induced by changes in endocannabinoid neurotransmission. Curr Opin Pharmacol 7:62–68

    Article  CAS  PubMed  Google Scholar 

  91. Sun Y, Bennett A (2007) Cannabinoids: a new group of agonists of PPARs. PPAR Research Article ID 23513:1–7

    Article  CAS  Google Scholar 

  92. Ananda P, Whitesideb G, Fowlerc CJ, Hohmannd AG (2009) Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res Rev 60:255–266

    Article  CAS  Google Scholar 

  93. Woolf CJ, Costigan M (1999) Transcriptional and posttranslational plasticity and the generation of inflammatory pain. PNAS 96:7723–7730

    Article  CAS  PubMed  Google Scholar 

  94. Hefti FF (2006) Novel class of pain drugs based on antagonism of NGF. TRIPS 27:85–91

    CAS  Google Scholar 

  95. Fang X, Djouhri L, McMullan S, Berry C, Okuse K, Waxman SG, Lawson SN (2005) Trka is expressesed in nociceptive neurons influences electrophysiological properties via Nav 1.8 expressed rapidly conducting nociceptors. J Neurosci 25:4868–4878

    Article  CAS  PubMed  Google Scholar 

  96. Owolabi JB, Rizkalla G, Tehim A, Ross GM, Riopelle RJ, Kamboj R, Ossipov M, Bian D, Wegert S, Porreca F, Lee DKH (1999) Characterization of antiallodynic actions of ALE-0540, a novel growth factor receptor antagonist, in the rat. J Pharmacol Exp Ther 289:1271–1276

    CAS  PubMed  Google Scholar 

  97. Bleakman D, Alta A, Nisenbauma ES (2006) Glutamate receptors and pain. Semin Cell Dev Biol 17:592–604

    Article  CAS  PubMed  Google Scholar 

  98. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    Article  CAS  PubMed  Google Scholar 

  99. Fiorentino PM, Cairns BE, Hu JW (1999) Development of inflammation after application of mustard oil or glutamate to the rat temporomandibular joint. Arch Oral Biol 44:27–32

    Article  CAS  PubMed  Google Scholar 

  100. Omote K, Kawamata T, Nakayama Y, Kawamata M, Hazama K, Namiki A (2001) The effects of peripheral administration of a novel selective antagonist for prostaglandin E receptor subtype EP1, ONO-8711, in a rat model of postoperative pain. Anesth Analg 92:233–238

    Article  CAS  PubMed  Google Scholar 

  101. Kumar A, Negi G, Gulati A, Sharma SS (2008) Diabetic and neuropathic pain. Curr Res Info Pharm Sci 9:69–72

    Google Scholar 

  102. Walker K, Reeve A, Bowes M, Winter J, Wotherspoon G, Davis A, Schmid P, Gasparini F, Kuhn R, Urban L (2001) mGlu5 receptors nociceptive function. II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacol 40:10–19

    Article  CAS  Google Scholar 

  103. Neugebauer V, Lucke T, Grubb B, Schaible HG (1994) The involvement of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the responsiveness of rat spinal neurons with input from the chronically inflamed ankle. Neurosci Lett 170:237–240

    Article  CAS  PubMed  Google Scholar 

  104. McCarson KE, Enna SJ (2003) Nociceptive regulation of GABAB receptor gene expression in sensory systems of the rat. Neuropharmacol 38:1767–1773

    Article  Google Scholar 

  105. Enna SJ, Kenneth E, McCarson (2006) The role of GABA in the mediation and perception of pain. Adv Pharmacol 54:1–27

    Article  CAS  PubMed  Google Scholar 

  106. Neto FL, Ferreira-Gomes J, José M, Castro-Lopes (2006) Distribution of GABA receptors in the thalamus, their involvement in nociception. Adv Pharmacol 54:29–51

    Article  CAS  PubMed  Google Scholar 

  107. Gajraj NM (2007) Pregabalin: its pharmacology and use in pain management. Anesth Analg 105:1805–1815

    Article  CAS  PubMed  Google Scholar 

  108. Zamponi GW, Lewis RJ, Todorovic SM, Arneric SP, Snutch TP (2009) Role of voltage-gated calcium channels in ascending pain pathways. Brain Res Rev 60:84–89

    Article  CAS  PubMed  Google Scholar 

  109. Ambalavanar R, Moritani M, Moutanni A, Gangula P, Yallampalli C, Dessem D (2006) Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviors which are modulated by a neuropeptide antagonist. Pain 120:53–68

    Article  CAS  PubMed  Google Scholar 

  110. Kelly MA, Beuckmann CT, Williams SC, Sinton CM, Motoike T, Richardson JA, Hammer RE, Garry MG, Yanagisawa M (2005) Neuropeptide B-deficient mice demonstrate hyperalgesia in response to inflammatory pain. PNAS 102:9942–9947

    Article  CAS  PubMed  Google Scholar 

  111. Brumovsky P, Shi TS, Landry M, Villar MJ, Hokfelt T (2007) Neuropeptide tyrosine and pain. Trends Pharmacol Sci 28:93–102

    Article  CAS  PubMed  Google Scholar 

  112. Nystedt JM, Lemberg K, Lintunen M, Mustonen K, Holma R, Kontinen VK, Kalso E, Panula P (2004) Pain- and morphine-associated transcriptional regulation of neuropeptide FF and the G-protein-coupled NPFF2 receptor gene. Neurobiol Dis 16:254–262

    Article  CAS  PubMed  Google Scholar 

  113. Xu XJ, Hao JX, Hokfelt T (2001) Increased level of cholecystokinin in cerebrospinal fluid is associated with chronic pain-like behavior in spinally injured rats. Peptides 22:1305–1308

    Article  CAS  PubMed  Google Scholar 

  114. Wiesenfeld-Hallin Z, Xu X, Hökfelt T (2002) The role of spinal cholecystokinin in chronic pain states. Pharmacol Toxicol 91:398–403

    Article  CAS  PubMed  Google Scholar 

  115. McCleane GJ (2002) A phase 1 study of the cholecystokinin (CCK) B antagonist L-365, 260 in human subjects taking morphine for intractable non-cancer pain. Neurosci Lett 332:210–212

    Article  CAS  PubMed  Google Scholar 

  116. D’hoedt D, Bertrand D (2009) Nicotinic acetylcholine receptors: an overview on drug discovery. Exp Opin Ther Targets 13:395–411

    Article  Google Scholar 

  117. Sawynok J (2003) Topical and peripherally acting analgesics. Pharmacol Rev 55:1–20

    Article  CAS  PubMed  Google Scholar 

  118. Akkari R, Burbiel JC, Hockemeyer J, Muller CE (2006) Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Top Med Chem 6:1375–1399

    CAS  PubMed  Google Scholar 

  119. Ocana M, Cendan CM, Cobos EJ, Entrena JM, Baeyens JM (2004) Potassium channels and pain: present realities and future opportunities Eur J Pharmacol 500:203–219

    CAS  Google Scholar 

  120. Khodorovaa A, Montmayeura JP, Strichartz G (2009) Endothelin receptors and pain. J Pain 10:4–28

    Article  CAS  Google Scholar 

  121. Wood J (2000) Pathobiology of visceral pain: molecular mechanisms and therapeutic implications. II. Genetic approaches to pain therapy. Am J Physiol Gastrointest Liver Physiol 278:G507–G512

    CAS  PubMed  Google Scholar 

  122. Hain HS, Belknap JK, Mogil JS (1999) Pharmacogenetic evidence for the involvement of 5-hydroxytryptamine (serotonin)-1B receptors in the mediation of morphine antinociceptive sensitivity. J Pharmacol Exp Ther 291:444–449

    CAS  PubMed  Google Scholar 

  123. Pohl M, Braz J (2001) Gene therapy of pain: emerging strategies and future directions. Eur J Pharmacol 429:39–48

    Article  CAS  PubMed  Google Scholar 

  124. Christoph T, Grünweller A, Mika J, Schäfer MK, Wade EJ, Weihe E, Erdmann VA, Frank R, Gillen C, Kurreck J (2006) Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain. Biochem Biophys Res Commun 350:238–243

    Article  CAS  PubMed  Google Scholar 

  125. Mata M, Hao S, Fink DJ (2008) Gene therapy directed at the neuroimmune component of chronic pain with particular attention to the role of TNFα. Neurosci Lett 437:209–213

    Article  CAS  PubMed  Google Scholar 

  126. Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  CAS  PubMed  Google Scholar 

  127. Gimbrone MA, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G (2000) Endothelial dysfunction, hemodynamic forces, atherogenesis. Ann NY Acad Sci 902:230–240

    Article  CAS  PubMed  Google Scholar 

  128. Foulds S, Galustian C, Mansfield AO, Schachter M (2001) Transcription factor NF-kappaB expression and postsurgical organ dysfunction. Ann Surg 233:70–78

    Article  CAS  PubMed  Google Scholar 

  129. Zhang JH, Huang Y (2006) The immune system: a new look at pain. Chin Med J 119:930–938

    CAS  PubMed  Google Scholar 

  130. Milligan ED, Sloane EM, Watkins LR (2008) Glia in pathological pain: a role for fractalkine. J Neuroimmunol 198(1-2):113–120

    Article  CAS  PubMed  Google Scholar 

  131. Yang D, Rosa G, Tewary P, Oppenheim JJ (2009) Alarmins link neutrophils and dendritic cells. Trends Immunol 30(11):531–537

    Article  CAS  PubMed  Google Scholar 

  132. Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17:359–365

    Article  CAS  PubMed  Google Scholar 

  133. Keystone EC (2006) Strategies to control disease in rheumatoid arthritis with tumor necrosis factor antagonists—an opportunity to improve outcomes. Nat Clin Prac Rheumatol 2:594–601

    Article  CAS  Google Scholar 

  134. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279

    Article  CAS  PubMed  Google Scholar 

  135. Furst DE (2004) Anakinra: review of recombinant human interleukin-I receptor antagonist in the treatment of rheumatoid arthritis. Clin Ther 26:1960–1975

    Article  CAS  PubMed  Google Scholar 

  136. Maini RN, Ballara S, Taylor PC, Reusch P, Marme D, Feldmann M (2006) Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum 54:2817–2829

    Article  CAS  PubMed  Google Scholar 

  137. Bley KR, Bhattacharya A, Daniels DV, Gever J, Jahangir A, O'Yang C (2006) RO1138452 and RO3244794: characterization of structurally distinct, potent and selective IP (prostacyclin) receptor antagonists. Br J Pharmacol 147:335–345

    Article  CAS  PubMed  Google Scholar 

  138. Pulichino AM, Rowland S, Wu T, Clark P, Xu D, Mathieu MC (2006) Prostacyclin antagonism reduces pain and inflammation in rodent models of hyperalgesia and chronic arthritis. J Pharmacol Exp Ther 319:1043–1050

    Article  CAS  PubMed  Google Scholar 

  139. Hall A, Brown SH, Budd C, Clayton NM, Gerard MP, Gl G, Hayhow TG, Hurst DN, Naylor A, Rawlings DA, Scoccitti T, Wilson AW, Winchester WJ (2009) Discovery of GSK345931A: an EP1 receptor antagonist with efficacy in preclinical models of inflammatory pain. Bioorg Med Chem Lett 19:497–501

    Article  CAS  PubMed  Google Scholar 

  140. Hall A, Billinton A, Brown SH, Chowdhury A, Clayton NM, Gerard MP, Gibson M, Goldsmith PA, Naylor A, Peet CF, Scoccitti T, Wilson AW, Winchester W (2009) Discovery of sodium 6-[(5-chloro-2-{[(4-chloro-2-fluorophenyl)methyl]oxy}phenyl)methyl]-2-pyridinecarboxylate (GSK269984A) an EP1 receptor antagonist for the treatment of inflammatory pain. Bioorg Med Chem Lett 19:2599–2603

    Article  CAS  PubMed  Google Scholar 

  141. Gerard MP, Bit RA, Brown SH, Chaignot HM, Chowdhury A, Chessell IP, Clayton NM, Coleman T, Hall A, Hammond B, Hurst DN, Michel AD, Naylor A, Novelli R, Scoccitti T, Spalding D, Tang SP, Wilson AW, Wilson R (2007) The discovery of 6-[2-(5-chloro-2-{[(2, 4- difluorophenyl)methyl]oxy}phenyl)-1-cyclopenten-1-yl]-2-pyridinecarboxylic acid, GW848687X, a potent and selective prostaglandin EP1 receptor antagonist for the treatment of inflammatory pain. Bioorg Med Chem Lett 17:385–389

    Article  CAS  Google Scholar 

  142. Nakao K, Murase A, Ohshiro H, Okumura T, Taniguchi K, Murata (2007) Y CJ-023, 423, a novel, potent and selective prostaglandin EP4 receptor antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 322:686–694

    Article  CAS  PubMed  Google Scholar 

  143. Clark P, Rowland SE, Denis D, Mathieu MC, Stocco R, Poirier H (2008) MF498 [N-{[4-(5, 9-diethoxy-6-oxo-6, 8-dihydro-7H-pyrrolo[3, 4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J Pharmacol Exp Ther 325:425–434

    Article  CAS  PubMed  Google Scholar 

  144. Murase A, Taniguchi Y, Tonai-Kachi H, Nakao K, Takada J (2008) In vitro pharmacological characterization of CJ-042794, a novel, potent, and selective prostaglandin EP4 receptor antagonist. Life Sci 82:226–232

    Article  CAS  PubMed  Google Scholar 

  145. Su DS, Markowitz MK, Dipardo RM, Murphy KL, Harrell CM, O’Malley SS, Ransom RW, Chang RS, Ha S, Hess FJ, Pettibone DJ, Mason GS, Boyce S, Freidinger RM, Bock MG (2003) Discovery of a potent, non-peptide bradykinin B1 receptor antagonist. J Am Chem Soc 125:7516–7517

    Article  CAS  PubMed  Google Scholar 

  146. Gougat J, Ferrari B, Sarran L, Planchenault C, Poncelet M, Maruani J, Alonso R, Cudennec A, Croci T, Guagnini F, Urban-Szabo K, Martinolle JP, Soubrie P, Finance O, Le Fur G (2004) SSR240612 [(2R)- 2-[((3R)- 3-(1, 3-benzodioxol-5-yl)- 3-{[(6- methoxy-2- naphthyl) sulfonyl] amino} propanoyl) amino]-3- (4-{[2R, 6S)-2, 6- dimethylpiperidinyl] methyl}phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 309:661–669

    Article  CAS  PubMed  Google Scholar 

  147. Wood MR, Kim JJ, Han W, Dorsey BD, Homnick CF, Dipardo RM, Kuduk SD, MacNeil T, Murphy KL, Lis EV, Ransom RW, Stump GL, Lynch JJ, O’Malley SS, Miller PJ, Chen TB, Arrell CM, Chang RS, Sandhu P, Ellis JD, Bondiskey PJ, Pettibone DJ, Freidinger RM, Bock MG (2003) Benzodiazepines as potent and selective bradykinin B1 antagonists. J Med Chem 46:1803–1806

    Article  CAS  PubMed  Google Scholar 

  148. Wonga GY, Gavva NR (2009) Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res Rev 60:267–277

    Article  CAS  Google Scholar 

  149. Bley KR (2004) Recent developments in transient receptor potential vanilloid receptor 1 agonist-based therapies. Expert Opin Investig Drugs 13:1445–1456

    Article  CAS  PubMed  Google Scholar 

  150. Roberts LA, Connor M (2006) TRPV1 antagonists as a potential treatment for hyperalgesia. Recent Pat CNS Drug Discov 1:65–76

    Article  CAS  PubMed  Google Scholar 

  151. Holzer P (2008) The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor. Br J Pharmacol 155:1145–1162

    Article  CAS  PubMed  Google Scholar 

  152. Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8:55–68

    Article  CAS  PubMed  Google Scholar 

  153. Wang CZ, Zhang H, Jiang H, Lu W, Zhao ZQ (2006) A novel conotoxin from Conus striatus, μ-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium channels. Toxicon 47:122–132

    Article  CAS  PubMed  Google Scholar 

  154. Amir R, Argoff CE, Bennett GJ (2006) The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain 7:S1–S29

    Article  CAS  PubMed  Google Scholar 

  155. Joshi SK, Honore P, Hernandez G, Schmidt R, Gomtsyan A, Scanio M, Kort M, Jarvis MF (2009) Additive antinociceptive effects of the selective Nav1.8 blocker A-803467 and selective TRPV1 antagonists in rat inflammatory and neuropathic pain models. J Pain 10:306–315

    Article  CAS  PubMed  Google Scholar 

  156. Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454

    Article  CAS  PubMed  Google Scholar 

  157. Lambrecht G, Braun K, Damer M, Ganso M, Hildebrandt C, Ullmann H (2002) Structure-activity relationships of suramin and pyridoxal-5′-phosphate derivatives as P2 receptor antagonists. Curr Pharm Des 8:2371–2399

    Article  CAS  PubMed  Google Scholar 

  158. Wu G, Whiteside GT, Lea G, Nolen S, Niosu M, Pearson MS (2004) A-317491, a selective P2X3/P2X2/3 receptor antagonist, reverses inflammatory mechanical hyperalgesia through action on peripheral receptors in rats. Eur J Pharmacol 504:45–53

    Article  CAS  PubMed  Google Scholar 

  159. Kakimoto S, Tamura S, Watabiki T, Nagakura Y, Shibasaki K, Wanibuchi F, Okada M (2004) YM529, a new generation bisphosphonate, exhibits P2X2/3, 3 receptor antagonism and analgesic effects. Program no. 285.4 2004. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC

  160. Liang SD, Gao Y, Xu CS, Xu BH, Mu SN (2004) Effect of tetramethylpyrazine on acute nociception mediated by signaling of P2X receptor activation in rat. Brain Res 995:247–252

    Article  CAS  PubMed  Google Scholar 

  161. King BF, Liu M, Townsend-Nicholson A, Pfister J, Padilla F, Ford DW (2005) Antagonism of ATP responses at P2X receptor subtypes by the pH indicator dye, phenol red. Br J Pharmacol 145:313–322

    Article  CAS  PubMed  Google Scholar 

  162. Yao BB, Hsieh GC, Frost JM, Fan Y, Garrison TR, Daza AV, Grayson GK, Zhu CZ, Pai M, Chandran P, Salyers AK, Wensink EJ, Honore P, Sullivan JP, Dart MJ, Meyer MD (2008) In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models. Br J Pharmacol 153:390–401

    Article  CAS  PubMed  Google Scholar 

  163. Yao BB, Hsieh G, Daza AV, Fan Y, Grayson GK, Garrison TR, El Kouhen O, Hooker BA, Pai M, Wensink EJ, Salyers AK, Chandran P, Zhu CZ, Zhong C, Ryther K, Gallagher ME, Chin CL, Tovcimak AE, Hradil VP, Fox GB, Dart MJ, Honore P, Meyer MD (2009) Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2, 2, 3, 3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4, 5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 328:141–151

    Article  CAS  PubMed  Google Scholar 

  164. Clayton N, Marshall FH, Bountra C, O'Shaughnessy CT (2002) CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain 96:253–260

    Article  CAS  PubMed  Google Scholar 

  165. Hefti FF, Rosenthal A, Walicke PA, Wyatt S, Vergara G, Shelton DL, Davies AM (2006) Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol Sci 27:85–91

    Article  CAS  PubMed  Google Scholar 

  166. Watson JJ, Allen SJ, Dawbarn D (2008) Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs 22:349–359

    Article  CAS  PubMed  Google Scholar 

  167. Szakács R, Weiczner R, Mihály A, Krisztin-Péva B, Zádor Z, Zádor E (2003) Non-competitive NMDA receptor antagonists moderate seizure-induced c-fos expression in the rat cerebral cortex. Brain Res Bull 59:485–493

    Article  PubMed  Google Scholar 

  168. Tao F, Skinner J, Su Q, Johns RA (2006) AMPA antagonist new role for spinal stargazin in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated pain sensitization after inflammation. J Neurosci Res 84:867–873

    Article  CAS  PubMed  Google Scholar 

  169. Yamada H, Nakamoto H, Suzuki Y, Ito T, Aisaka K (2002) Pharmacological profiles of a novel opioid receptor–like1 (ORL(1)) receptor antagonist, JTC-801. Br J Pharmacol 135:323–332

    Article  CAS  PubMed  Google Scholar 

  170. Zaveri N (2003) Peptide and nonpeptide ligands for the nociceptin/orphanin FQ receptor ORL1: research tools and potential therapeutic agents. Life Sci 73:663–678

    Article  CAS  PubMed  Google Scholar 

  171. Nazzaro C, Rizzi A, Salvadori S, Guerrini R, Regoli D, Zeilhofer HU, Calo G (2007) UFP-101 antagonizes the spinal antinociceptive effects of nociceptin/orphanin FQ: behavioral and electrophysiological studies in mice. Peptides 28:663–669

    Article  CAS  PubMed  Google Scholar 

  172. Fischetti C, Camarda V, Rizzi A, Pelà M, Trapella C, Guerrini R, McDonald J, Lambert DG, Salvadori S, Regoli D, Calo G (2009) Pharmacological characterization of the nociceptin/orphanin FQ receptor non peptide antagonist Compound 24. Eur J Pharmacol 614:50–57

    Article  CAS  PubMed  Google Scholar 

  173. Dost R, Rostock A, Rundfeldt C (2004) The anti-hyperalgesic activity of retigabine is mediated by KCNQ potassium channel activation. Naunyn Schmiedebergs Arch Pharmacol 369:382–390

    Article  CAS  PubMed  Google Scholar 

  174. Altier C, Zamponi GW (2004) Targeting Ca2+ channels to treat pain: t-type versus N-type. Trends Pharmacol Sci 25:465–470

    Article  CAS  PubMed  Google Scholar 

  175. Gribkoff VK (2006) The role of voltage-gated calcium channels in pain and nociception. Semin Cell Dev Biol 17:555–564

    Article  CAS  PubMed  Google Scholar 

  176. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF (2007) A-803467, a potent and selective Nav1.8 sodium channelblocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci USA 104:8205–8206

    Article  CAS  Google Scholar 

  177. Bulaj G, Zhang MM, Green BR, Fiedler B, Layer RT, Wei S (2006) Synthetic muO-conotoxin MrVIB blocks TTX-resistant sodium channel NaV1.8 and has a long-lasting analgesic activity. Biochem 45:7404–7414

    Article  CAS  Google Scholar 

  178. D’hoedt D, Bertrand D (2009) Nicotinic acetylcholine receptors: an overview on drug discovery. Expert Opin Ther Targets 13(4):395–411

    Article  PubMed  Google Scholar 

  179. Jain KK (2004) Modulators of nicotinic acetylcholine receptors as analgesics. Curr Opin Investig Drugs 5:76–81

    CAS  PubMed  Google Scholar 

  180. Luccarini P, Henry M, Alvarez P, Gaydier AM, Dallel R (2003) Contribution of neurokinin 1 receptors in the cutaneous orofacial inflammatory pain. Naunyn Schmiedebergs Arch Pharmacol 368:320–323

    Article  CAS  PubMed  Google Scholar 

  181. Welsh DJ, Harnett M, MacLean M, Peacock AJ (2004) Proliferation and signaling in fibroblasts: role of 5-hydroxytryptamine2a receptor and transporter. Am J Resp Crit Care Med 170:252–259

    Article  PubMed  Google Scholar 

  182. Wallace JL, Viappiani S, Bolla M (2009) Cyclooxygenase-inhibiting nitric oxide donators for osteoarthritis. Trends Pharmacol Sci 30:112–117

    Article  CAS  PubMed  Google Scholar 

  183. Cohen SB, Valen P, Ritchlin C (2006) RANKL inhibition with denosumab reduces progression of bone erosions in patients with rheumatoid arthritis: month 6 MRI results. Arthritis Rheum 54:831

    Google Scholar 

  184. Herman S, Kronke G, Schett G (2008) Molecular mechanisms of inflammatory bone damage: emerging targets for therapy. Trends Mol Med 14:245–253

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul R. Chopade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopade, A.R., Mulla, W.A. Novel strategies for the treatment of inflammatory hyperalgesia. Eur J Clin Pharmacol 66, 429–444 (2010). https://doi.org/10.1007/s00228-010-0784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0784-7

Keywords

Navigation