Skip to main content
Log in

eNOS T-786C polymorphism affects atorvastatin-induced changes in erythrocyte membrane fluidity

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Statins have pleiotropic effects, including endothelial nitric oxide synthase (eNOS) upregulation and increased nitric oxide formation, which can be modulated by a genetic polymorphism in the promoter region of the eNOS gene (T-786C). Here, we report our investigation of whether this polymorphism modulates the effects of atorvastatin on the fluidity of erythrocyte membranes.

Methods

We genotyped 200 healthy subjects (males, 18–60 years of age) and then randomly selected 15 of these with the TT genotype and 15 with the CC genotype to receive placebo or atorvastatin (10 mg/day oral administration) for 14 days. Cell membrane fluidity was evaluated by electron paramagnetic resonance (EPR) and spin-labeling method. The EPR spectra were registered on a VARIAN-E4 spectrometer. Thiobarbituric acid-reactive species (TBA-RS) and plasma membrane cholesterol were determined in the erythrocytes.

Results

Atorvastatin reduced membrane fluidity in CC subjects (P < 0.05) but not in those with the TT genotype (P > 0.05). While no significant differences were found in plasma membrane cholesterol concentrations, higher TBA-RS concentrations were found in the CC subjects than in the TT subjects (P < 0.05).

Conclusions

These findings suggest that a short treatment with atorvastatin is disadvantageous to subjects with the CC genotype for the T-786C polymorphism compared to those with TT genotype, at least in terms of the hemorheological properties of erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lubin B, Kuypers F, Chiu D (1989) Red cell membrane lipid dynamics. Prog Clin Biol Res 319:507–522; discussion 523–504

    PubMed  CAS  Google Scholar 

  2. Dougherty RM, Galli C, Ferro-Luzzi A, Iacono JM (1987) Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am J Clin Nutr 45:443–455

    PubMed  CAS  Google Scholar 

  3. Macchia T, Mancinelli R, Barbini DA, Taggi F, Avico U, Cantafora A (1991) Determination of membrane cholesterol in normal and pathological red blood cells. Clin Chim Acta 199:59–67

    Article  PubMed  CAS  Google Scholar 

  4. Ozdemirler G, Kucuk S, Orhan Y, Aykac-Toker G, Uysal M (2001) Lipid and protein oxidation in erythrocyte membranes of hypercholesterolemic subjects. Clin Biochem 34:335–339

    Article  PubMed  CAS  Google Scholar 

  5. Koter M, Franiak I, Strychalska K, Broncel M, Chojnowska-Jezierska J (2004) Damage to the structure of erythrocyte plasma membranes in patients with type-2 hypercholesterolemia. Int J Biochem Cell Biol 36:205–215

    Article  PubMed  CAS  Google Scholar 

  6. Mawatari S, Ohnishi Y, Kaji Y, Maruyama T, Murakami K, Tsutsui K, Fujino T (2003) High-cholesterol diets induce changes in lipid composition of rat erythrocyte membrane including decrease in cholesterol, increase in alpha-tocopherol and changes in fatty acids of phospholipids. Biosci Biotechnol Biochem 67:1457–1464

    Article  PubMed  CAS  Google Scholar 

  7. Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302:772–776

    Article  PubMed  CAS  Google Scholar 

  8. Zerbini G, Ceolotto G, Gaboury C, Mos L, Pessina AC, Canessa M, Semplicini A (1995) Sodium-lithium countertransport has low affinity for sodium in hyperinsulinemic hypertensive subjects. Hypertension 25:986–993

    PubMed  CAS  Google Scholar 

  9. Yamori Y, Nara Y, Horie R, Ooshima A (1980) Abnormal membrane characteristics of erythrocytes in rat models and men with predisposition to stroke. Clin Exp Hypertens 2:1009–1021

    Article  PubMed  CAS  Google Scholar 

  10. Muriel P, Sandoval G (2000) Nitric oxide and peroxynitrite anion modulate liver plasma membrane fluidity and Na(+)/K(+)-ATPase activity. Nitric Oxide 4:333–342

    Article  PubMed  CAS  Google Scholar 

  11. Tsuda K, Kimura K, Nishio I, Masuyama Y (2000) Nitric oxide improves membrane fluidity of erythrocytes in essential hypertension: An electron paramagnetic resonance investigation. Biochem Biophys Res Commun 275:946–954

    Article  PubMed  CAS  Google Scholar 

  12. Tsuda K, Nishio I (2004) A calcium channel blocker, benidipine, improves cell membrane fluidity in human subjects via a nitric oxide-dependent mechanism. An electron paramagnetic resonance investigation. Am J Hypertens 17:1143–1150

    Article  PubMed  CAS  Google Scholar 

  13. Gaffney BJ, McNamee CM (1974) Spin-label measurements in membranes. With appendix: a use of computers in EPR spectroscopy. Methods Enzymol 32:161–198

    Article  PubMed  CAS  Google Scholar 

  14. Wierzbicki AS, Poston R, Ferro A (2003) The lipid and non-lipid effects of statins. Pharmacol Ther 99:95–112

    Article  PubMed  CAS  Google Scholar 

  15. Palinski W (2001) New evidence for beneficial effects of statins unrelated to lipid lowering. Arterioscler Thromb Vasc Biol 21:3–5

    PubMed  CAS  Google Scholar 

  16. Takemoto M, Liao JK (2001) Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol 21:1712–1719

    Article  PubMed  CAS  Google Scholar 

  17. Dilaveris P, Giannopoulos G, Riga M, Synetos A, Stefanadis C (2007) Beneficial effects of statins on endothelial dysfunction and vascular stiffness. Curr Vasc Pharmacol 5:227–237

    Article  PubMed  CAS  Google Scholar 

  18. Delliaux S, Steinberg JG, Bechis G, Paganelli F, Oliver C, Lesavre N, Jammes Y (2007) Statins alter oxidant-antioxidant status and lower exercise-induced oxidative stress. Int J Clin Pharmacol Ther 45:244–252

    PubMed  CAS  Google Scholar 

  19. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  PubMed  CAS  Google Scholar 

  20. Martinez M, Vaya A, Marti R, Gil L, Lluch I, Carmena R, Aznar J (1996) Effect of HMG-CoA reductase inhibitors on red blood cell membrane lipids and haemorheological parameters, in patients affected by familial hypercholesterolemia. Haemostasis 26[Suppl 4]:171–176

    PubMed  CAS  Google Scholar 

  21. Nagassaki S, Sertorio JT, Metzger IF, Bem AF, Rocha JB, Tanus-Santos JE (2006) eNOS gene T-786C polymorphism modulates atorvastatin-induced increase in blood nitrite. Free Radic Biol Med 41:1044–1049

    Article  PubMed  CAS  Google Scholar 

  22. Fatini C, Mannini L, Sticchi E, Cecchi E, Bruschettini A, Leprini E, Pagnini P, Gensini GF, Prisco D, Abbate R (2005) eNOS gene affects red cell deformability: role of T-786C, G894T, and 4a/4b polymorphisms. Clin Appl Thromb Hemost 11:481–488

    Article  PubMed  CAS  Google Scholar 

  23. Souza-Costa DC, Sandrim VC, Lopes LF, Gerlach RF, Rego EM, Tanus-Santos JE (2007) Anti-inflammatory effects of atorvastatin: modulation by the T-786C polymorphism in the endothelial nitric oxide synthase gene. Atherosclerosis 193:438–444

    Article  PubMed  CAS  Google Scholar 

  24. Tanus-Santos JE, Desai M, Flockhart DA (2001) Effects of ethnicity on the distribution of clinically relevant endothelial nitric oxide variants. Pharmacogenetics 11:719–725

    Article  PubMed  CAS  Google Scholar 

  25. Nagassaki S, Metzger IF, Souza-Costa DC, Marroni AS, Uzuelli JA, Tanus-Santos JE (2005) eNOS genotype is without effect on circulating nitrite/nitrate level in healthy male population. Thromb Res 115:375–379

    Article  PubMed  CAS  Google Scholar 

  26. Marroni AS, Metzger IF, Souza-Costa DC, Nagassaki S, Sandrim VC, Correa RX, Rios-Santos F, Tanus-Santos JE (2005) Consistent interethnic differences in the distribution of clinically relevant endothelial nitric oxide synthase genetic polymorphisms. Nitric Oxide 12:177–182

    Article  PubMed  CAS  Google Scholar 

  27. Tanus-Santos JE, Desai M, Deak LR, Pezzullo JC, Abernethy DR, Flockhart DA, Freedman JE (2002) Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics 12:407–413

    Article  PubMed  CAS  Google Scholar 

  28. Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez-Vico F, Martinez-Cayuela M, Zafra MF, Garcia-Peregrin E, Ramirez H (1991) A procedure for the simultaneous determination of lipid and protein in biomembranes and other biological samples. Lipids 26:77–80

    Article  PubMed  CAS  Google Scholar 

  30. Schreier-Muccillo S, Marsh D, Smith IC (1976) Monitoring the permeability profile of lipid membranes with spin probes. Arch Biochem Biophys 172:1–11

    Article  PubMed  CAS  Google Scholar 

  31. Schreier S, Polnaszek CF, Smith IC (1978) Spin labels in membranes. Problems in practice. Biochim Biophys Acta 515:395–436

    PubMed  CAS  Google Scholar 

  32. Koter M, Broncel M, Chojnowska-Jezierska J, Klikczynska K, Franiak I (2002) The effect of atorvastatin on erythrocyte membranes and serum lipids in patients with type-2 hypercholesterolemia. Eur J Clin Pharmacol 58:501–506

    Article  PubMed  CAS  Google Scholar 

  33. Koter M, Franiak I, Broncel M, Chojnowska-Jezierska J (2003) Effects of simvastatin and pravastatin on peroxidation of erythrocyte plasma membrane lipids in patients with type 2 hypercholesterolemia. Can J Physiol Pharmacol 81:485–492

    Article  PubMed  CAS  Google Scholar 

  34. Rabini RA, Polenta M, Staffolani R, Tocchini M, Signore R, Testa I, Mazzanti L (1993) Effect of hydroxymethylglutaryl-CoA reductase inhibitors on the functional properties of erythrocyte membranes. Exp Mol Pathol 59:51–57

    Article  PubMed  CAS  Google Scholar 

  35. Jubelin BC, Gierman JL (1996) Erythrocytes may synthesize their own nitric oxide. Am J Hypertens 9:1214–1219

    Article  PubMed  CAS  Google Scholar 

  36. Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, Kumara I, Gharini P, Kabanova S, Ozuyaman B, Schnurch HG, Godecke A, Weber AA, Robenek M, Robenek H, Bloch W, Rosen P, Kelm M (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107:2943–2951

    Article  PubMed  CAS  Google Scholar 

  37. Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    PubMed  CAS  Google Scholar 

  38. Laufs U, Gertz K, Huang P, Nickenig G, Bohm M, Dirnagl U, Endres M (2000) Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 31:2442–2449

    PubMed  CAS  Google Scholar 

  39. Laufs U, Wassmann S, Hilgers S, Ribaudo N, Bohm M, Nickenig G (2001) Rapid effects on vascular function after initiation and withdrawal of atorvastatin in healthy, normocholesterolemic men. Am J Cardiol 88:1306–1307

    Article  PubMed  CAS  Google Scholar 

  40. Pintaric I, Eterovic D, Tocilj J, Reiner Z, Lusic I (2001) Effect of simvastatin on micropulmonary red cell mass in patients with hyperlipoproteinemia. Atherosclerosis 154:493–496

    Article  PubMed  CAS  Google Scholar 

  41. Martinez M, Vaya A, Marti R, Gil L, Lluch I, Carmena R, Aznar J (1996) Erythrocyte membrane cholesterol/phospholipid changes and hemorheological modifications in familial hypercholesterolemia treated with lovastatin. Thromb Res 83:375–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Pietro Ciancaglini and Ana Maria Sper Simão, Chemical Department, FFCLRP, Sao Paulo University, Ribeirao Preto, SP – Brazil, for their technical assistance with the experimental procedures. This study was funded by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP-Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Tanus-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagassaki, S., Herculano, R.D., Graeff, C.F.O. et al. eNOS T-786C polymorphism affects atorvastatin-induced changes in erythrocyte membrane fluidity. Eur J Clin Pharmacol 65, 385–392 (2009). https://doi.org/10.1007/s00228-008-0602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0602-7

Keywords

Navigation