Skip to main content
Log in

Voriconazole and fluconazole increase the exposure to oral diazepam

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

We assessed the effect of voriconazole and fluconazole on the pharmacokinetics and pharmacodynamics of diazepam.

Methods

Twelve healthy volunteers took 5 mg of oral diazepam in a randomised order on three study sessions: without pretreatment, after oral voriconazole 400 mg twice daily on the first day and 200 mg twice daily on the second day, or after oral fluconazole 400 mg on the first day and 200 mg on the second day. Plasma concentrations of diazepam and N-desmethyldiazepam were determined for up to 48 h. Pharmacodynamic variables were measured for 12 h.

Results

In the voriconazole phase, the area under the plasma concentration time curve \( {\left( {{\text{AUC}}_{{{\text{0 - }}\infty }} } \right)} \) of diazepam was increased (geometric mean ratio) 2.2-fold (p < 0.05; 90% confidence interval [CI] 1.56 to 2.82). This was associated with the prolongation of the mean elimination half-life (t1/2) from 31 h to 61 h (p < 0.01) after voriconazole. In the fluconazole phase, the \( {\text{AUC}}_{{{\text{0 - }}\infty }} \) of diazepam was increased 2.5-fold (p < 0.01; 90% CI 1.94 to 3.40), and the t1/2 was prolonged from 31 h to 73 h (p < 0.001). The peak plasma concentration of diazepam was practically unchanged by voriconazole and fluconazole. The pharmacodynamics of diazepam were changed only modestly.

Conclusion

Both voriconazole and fluconazole considerably increase the exposure to diazepam. Recurrent administration of diazepam increases the risk of clinically significant interactions during voriconazole or fluconazole treatment, because the elimination of diazepam is impaired significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Divoll M, Greenblatt DJ, Ochs HR, Shader RI (1983) Absolute bioavailability of oral and intramuscular diazepam: effects of age and sex. Anesth Analg 62(1):1–8

    Article  PubMed  CAS  Google Scholar 

  2. Bertilsson L, Henthorn TK, Sanz E, Tybring G, Sawe J, Villen T (1989) Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther 45(4):348–355

    Article  PubMed  CAS  Google Scholar 

  3. Andersson T, Miners JO, Veronese ME, Birkett DJ (1994) Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 38(2):131–137

    PubMed  CAS  Google Scholar 

  4. Jung F, Richardson TH, Raucy JL, Johnson EF (1997) Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases. Drug Metab Dispos 25(2):133–139

    PubMed  CAS  Google Scholar 

  5. Yang TJ, Krausz KW, Sai Y, Gonzales FJ, Gelboin HV (1999) Eight inhibitory monoclonal antibodies define the role of individual P-450s in human microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism. Drug Metab Dispos 27(1):102–109

    PubMed  CAS  Google Scholar 

  6. Caccia S, Garattini S (1990) Formation of active metabolites of psychotropic drugs: an updated review of their significance. Clin Pharmacokinet 18(6):434–459

    PubMed  CAS  Google Scholar 

  7. Boucher HW, Groll AH, Chiou CC, Walsh TJ (2004) Newer systemic antifungal agents. Pharmacokinetics, safety and efficacy. Drugs 64(18):1997–2020

    Article  PubMed  CAS  Google Scholar 

  8. Theuretzbacher U, Ihle F, Derendorf H (2006) Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet 45(7):649–663

    Article  PubMed  CAS  Google Scholar 

  9. Purkins L, Wood N, Greenhalgh K, Allen MJ, Oliver SD (2003) Voriconazole, a novel wide spectrum triazole: oral pharmacokinetics and safety. Br J Clin Pharmacol 56(Suppl 1):10–16

    Article  PubMed  CAS  Google Scholar 

  10. Hyland R, Jones BC, Smith DA (2003) Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metabol Dispos 31(5):540–547

    Article  CAS  Google Scholar 

  11. Romero AJ, Le Pogamp P, Nilsson L-G, Wood N (2002) Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther 71(4):226–234

    Article  PubMed  CAS  Google Scholar 

  12. Hynninen VV, Olkkola KT, Leino K, Lundgren S, Neuvonen PJ, Rane A, Valtonen M, Vyyrylainen H, Laine K (2006) Effects of the antifungals voriconazole and fluconazole on the pharmacokinetics of s-(+)- and R-(−)-Ibuprofen. Antimicrob Agents Chemother 50(6):1967–1972

    Article  PubMed  CAS  Google Scholar 

  13. Saari TI, Laine K, Leino K, Valtonen M, Neuvonen PJ, Olkkola KT (2006) Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 79(4):362–370

    Article  PubMed  CAS  Google Scholar 

  14. Saari TI, Laine K, Leino K, Valtonen M, Neuvonen PJ, Olkkola KT (2006) Voriconazole, but not terbinafine, markedly reduces alfentanil clearance and prolongs its half-life. Clin Pharmacol Ther 80(5):502–508

    Article  PubMed  CAS  Google Scholar 

  15. Morita K, Konishi H, Shimakawa H (1992) Fluconazole: a potent inhibitor of cytochrome P-450-dependent drug-metabolism in mice and humans in vivo. Comparative study with ketoconazole. Chem Pharm Bull (Tokyo) 40(5):1247–1251

    CAS  Google Scholar 

  16. Wienkers LC, Wurden CJ, Storch E, Kunze KL, Rettie AE, Trager WF (1996) Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 24(5):610–614

    PubMed  CAS  Google Scholar 

  17. Niwa T, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 28(9):1805–1808

    Article  PubMed  CAS  Google Scholar 

  18. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82(3):511–516

    Article  PubMed  CAS  Google Scholar 

  19. Varhe A, Olkkola KT, Neuvonen PJ (1996) Fluconazole, but not terbinafine, enhances the effects of triazolam by inhibiting its metabolism. Br J Clin Pharmacol 41(4):319–323

    Article  PubMed  CAS  Google Scholar 

  20. Palkama VJ, Isohanni MH, Neuvonen PJ, Olkkola KT (1998) The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 87(1):190–194

    Article  PubMed  CAS  Google Scholar 

  21. Gugler R, Jensen JC (1985) Omeprazole inhibits oxidative drug metabolism. Studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology 89(6):1235–1241

    PubMed  CAS  Google Scholar 

  22. Perucca E, Gatti G, Cipolla G, Spina E, Barel S, Soback S, Gips M, Bialer M (1994) Inhibition of diazepam metabolism by fluvoxamine: a pharmacokinetic study in normal volunteers. Clin Pharmacol Ther 56(5):471–476

    Article  PubMed  CAS  Google Scholar 

  23. Luurila H, Olkkola KT, Neuvonen PJ (1996) Interaction between erythromycin and the benzodiazepines diazepam and flunitrazepam. Pharmacol Toxicol 78(2):117–122

    PubMed  CAS  Google Scholar 

  24. Ahonen J, Olkkola KT, Neuvonen PJ (1996) The effect of the antimycotic itraconazole on the pharmacokinetics and pharmacodynamics of diazepam. Fundam Clin Pharmacol 10(3):314–318

    Article  PubMed  CAS  Google Scholar 

  25. Stebler T, Guentert TW (1991) Determination of diazepam and nordazepam in milk and plasma in the presence of oxazepam and temazepam. J Chromatogr 564(1):330–337

    Article  PubMed  CAS  Google Scholar 

  26. Gage R, Stopher DA (1998) A rapid HPLC assay for voriconazole in human plasma. J Pharm Biomed Anal 17(8):1449–1453

    Article  PubMed  CAS  Google Scholar 

  27. Pennick GJ, Clark M, Sutton DA, Rinaldi MG (2003) Development and validation of HPLC assay for voriconazole. Antimicrob Agents Chemother 47(7):2348–2350

    Article  PubMed  CAS  Google Scholar 

  28. Inagaki K, Takagi J, Lor E, Okamoto MP, Gill MA (1992) Determination of fluconazole in human serum by solid-phase extraction and reversed-phase high-performance liquid chromatography. Ther Drug Monit 14(4):306–311

    Article  PubMed  CAS  Google Scholar 

  29. De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269(22):15419–15422

    PubMed  Google Scholar 

  30. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen E, Bertilsson L, Ingelman-Sundberg M (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79(6):103–113

    Article  PubMed  CAS  Google Scholar 

  31. Stone BM (1984) Pencil and paper tests-sensitivity to psychotropic drugs. Br J Clin Pharmacol 18(Suppl 1):15S–20S

    PubMed  Google Scholar 

  32. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3(5715):132–135

    PubMed  CAS  Google Scholar 

  33. Bond A, Lader M (1974) The use of analogue visual scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  34. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54(1):53–58

    Article  PubMed  CAS  Google Scholar 

  35. Palkama VJ, Neuvonen PJ, Olkkola KT (1999) Effect of saquinavir on the pharmacokinetics and -dynamics of oral and intravenous midazolam. Clin Pharmacol Ther 66(1):33–39

    Article  PubMed  CAS  Google Scholar 

  36. Klotz U, Reinman I (1981) Elevation of steady-state diazepam levels by cimetidine. Clin Pharmacol Ther 30(4):513–517

    Article  PubMed  CAS  Google Scholar 

  37. Klotz U, Reinman I (1984) Pharmacokinetic and pharmacodynamic interaction study of diazepam and metoprolol. Eur J Clin Pharmacol 26(2):223–226

    Article  PubMed  CAS  Google Scholar 

  38. Greenblatt DJ, Abernethy DR, Morse DS, Harmatz JS, Shader RI (1984) Clinical importance of the interaction of diazepam and cimetidine. N Engl J Med 310(25):1639–1643

    Article  PubMed  CAS  Google Scholar 

  39. Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2c subfamily. Br J Clin Pharmacol 52(4):349–355

    Article  PubMed  CAS  Google Scholar 

  40. Sohn DR, Kobayashi K, Chiba K, Lee KH, Shin SG, Ishizaki T (1992) Disposition kinetics and metabolism of omeprazole in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation recruited from an Oriental population. J Pharmacol Exp Ther 262(3):1195–1202

    PubMed  CAS  Google Scholar 

  41. Ishizaki T, Chiba K, Manabe K, Koyama E, Hayashi M, Yasuda S, Horai Y, Tomono Y, Yamato C, Toyoki T (1995) Comparison of the interaction potential of a new proton pump inhibitor, E3810, versus omeprazole with diazepam in extensive and poor metabolizers of S-mephenytoin 4′-hydroxylation. Clin Pharmacol Ther 58(2):155–164

    Article  PubMed  CAS  Google Scholar 

  42. Qin XP, Xie HG, Wang W, He N, Huang SL, Xu ZH, Ou-Yang DS, Wang YJ, Zhou HH (1999) Effect of the gene dosage of CYP2C19 on diazepam metabolism in Chinese subjects. Clin Pharmacol Ther 66(6):642–646

    PubMed  CAS  Google Scholar 

  43. Inomata S, Nagashima A, Itagaki F, Homma M, Nishimura M, Osaka Y, Okuyama K, Tanaka E, Nakamura T, Kohda Y, Naito S, Miyabe M, Toyooka H (2005) CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin Pharmacol Ther 78(6):647–655

    Article  PubMed  CAS  Google Scholar 

  44. Laine K, Tybring G, Bertilsson L (2000) No sex-related differences but significant inhibition by oral contraceptives of CYP2C19 activity as measured by the probe drugs mephenytoin and omeprazole in healthy Swedish white subjects. Clin Pharmacol Ther 68(2):151–159

    Article  PubMed  CAS  Google Scholar 

  45. Herman RJ, Wilkinson GR (1996) Disposition of diazepam in young and elderly subjects after acute and chronic dosing. Br J Clin Pharmacol 42(2):147–155

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Elina Kahra, Mrs. Eija Mäkinen-Pulli and Mr. Jouko Laitila for technical assistance and skilful determinations of the drug plasma concentrations. The study was supported by the EVO grants #13821 and # 13390 of the Hospital District of Southwest Finland; the Duodecim Foundation; the Sigrid Juselius Foundation and the Swedish Council, Medicine (3902). All experiments comply with the current laws in Finland, where the research was performed. There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teijo I. Saari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saari, T.I., Laine, K., Bertilsson, L. et al. Voriconazole and fluconazole increase the exposure to oral diazepam. Eur J Clin Pharmacol 63, 941–949 (2007). https://doi.org/10.1007/s00228-007-0350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0350-0

Keywords

Navigation