Skip to main content

Advertisement

Log in

Analysis of rapid heart rate variability in the assessment of anticholinergic drug effects in humans

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Anticholinergic agents have widespread therapeutic indications in clinical medicine. In addition, certain other drug groups–such as neuroleptics, antidepressants and antihistamines–possess distinct anticholinergic properties that reduce tolerance and compliance. Especially in patients with heart disease, attention should be paid to cardiac anticholinergic drug effects. The analysis of short-term heart rate variability (HRV) provides a noninvasive tool to estimate vagal cholinergic outflow. In this review article, we present the basic principles of the most relevant techniques to study rapid HRV: the time domain analysis methods RMSSD and pNN50, and the high-frequency (HF) spectral component of HRV. We provide examples of previously reported effects of anticholinergic agents on these measures and also describe how adrenergic drugs may influence them. We have the following recommendations for a clinical pharmacologist investigating anticholinergic agents. (1) If the breathing rate of the study subject can be controlled during the assessment and the electrocardiogram recordings contain good-quality, stationary segments that are at least a few minutes long, then the HF power of HRV should be the method of choice. (2) During uncontrolled conditions, RMSSD should be included in the analyses, because it is less affected by changes in the respiratory pattern and it can be measured from shorter segments of electrocardiogram data. (3) Reduced short-term HRV suggests an anticholinergic, but not necessarily an antimuscarinic drug effect, since the inhibition of cholinergic vagal efferent activity may also originate from central or peripheral adrenergic influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Plotnick LH, Ducharme FM (2000) Combined inhaled anticholinergics and beta2-agonists for initial treatment of acute asthma in children. Cochrane Database Syst Rev 4:CD000060

    PubMed  Google Scholar 

  2. Hay-Smith J, Herbison P, Ellis G, Moore K (2002) Anticholinergic drugs versus placebo for overactive bladder syndrome in adults. Cochrane Database Syst Rev 3:CD003781

    PubMed  Google Scholar 

  3. Katzenschlager R, Sampaio C, Costa J, Lees A (2003) Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database Syst Rev 2:CD003735

    PubMed  Google Scholar 

  4. Bye CE, Clubley M, Henson T, Peck AW, Smith SA, Smith SE (1979) Changes in the human light reflex as a measure of the anticholinergic effects of drugs. A comparison with other measures. Eur J Clin Pharmacol 15:21–25

    Article  PubMed  Google Scholar 

  5. Clemmesen L (1988) Anticholinergic side-effects of antidepressants: studies of the inhibition of salivation. Acta Psychiatr Scand Suppl 345:90–93

    PubMed  Google Scholar 

  6. Golding JF, Stott JR (1997) Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. Br J Clin Pharmacol 43:633–637

    Article  PubMed  Google Scholar 

  7. Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    Article  PubMed  Google Scholar 

  8. Jose AD, Collison D (1970) The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res 4:160–167

    PubMed  Google Scholar 

  9. Korkushko OV, Shatilo VB, Plachinda Y, Shatilo TV (1991) Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability. J Auton Nerv Syst 32:191–198

    Article  PubMed  Google Scholar 

  10. Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K (1991) Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol 67:199–204

    Article  PubMed  Google Scholar 

  11. Bittiner SB, Smith SE (1988) Beta-adrenergic antagonists increase sinus arrhythmia, a vagotonic effect. Br J Clin Pharmacol 22:691–695

    Google Scholar 

  12. Borst C, Karemaker JM (1983) Time delays in the human baroreceptor reflex. J Auton Nerv Syst 9:399–409

    Article  PubMed  Google Scholar 

  13. Levy MN, Martin PJ, Iano T, Zieske H (1970) Effects of single vagal stimuli on heart rate and atrioventricular conduction. Am J Physiol 218:1256–1262

    PubMed  Google Scholar 

  14. Wallin BG, Nerhed C (1982) Relationship between spontaneous variations of muscle sympathetic activity and succeeding changes of blood pressure in man. J Auton Nerv Syst 6:293–302

    Article  PubMed  Google Scholar 

  15. Koizumi K, Terui N, Kollai M (1985) Effect of cardiac vagal and sympathetic nerve activity on heart rate in rhythmic fluctuations. J Auton Nerv Syst 12:251–259

    Article  PubMed  Google Scholar 

  16. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    PubMed  Google Scholar 

  17. Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ et al (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248:H151–H153

    PubMed  Google Scholar 

  18. Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39:801–805

    PubMed  Google Scholar 

  19. Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK (1997) Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448

    PubMed  Google Scholar 

  20. Elghozi JL, Girard A, Laude D (2001) Effects of drugs on the autonomic control of short-term heart rate variability. Auton Neurosci 90:116–121

    Article  PubMed  Google Scholar 

  21. Penttilä J, Scheinin H, Syvälahti E (2005) Measurement of anticholinergic effects of psychotropic drugs in humans. (in press)

  22. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

  23. Hamilton RM, McKechnie PS, Macfarlane PW (2004) Can cardiac vagal tone be estimated from the 10-second ECG? Int J Cardiol 95:109–115

    Article  PubMed  Google Scholar 

  24. Kleiger RE, Stein PK, Bosner MS, Rottman JN (1992) Time domain measurements of heart rate variability. Cardiol Clin 10:487–498

    PubMed  Google Scholar 

  25. Bigger JTJ, Albrecht P, Steinman RC, Rolnitzky LM, Fleiss JL, Cohen RJ (1989) Comparison of time- and frequency domain-based measures of cardiac parasympathetic activity in Holter recordings after myocardial infarction. Am J Cardiol 64:536–538

    Article  PubMed  Google Scholar 

  26. Kamen PW, Krum H, Tonkin AM (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Colch) 91:201–218

    Google Scholar 

  27. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48:1342–1347

    Article  PubMed  Google Scholar 

  28. Penttilä J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Coffeng R, Scheinin H (2001) Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol 21:365–376

    Article  PubMed  Google Scholar 

  29. Öri Z, Monir G, Weiss J, Sayhouni X, Singer DH (1992) Heart rate variability. Frequency domain analysis. Cardiol Clin 10:499–537

    PubMed  Google Scholar 

  30. Challis RE, Kitney RI (1991) Biomedical signal processing (in four parts). Part 2. The frequency transforms and their inter-relationships. Med Biol Eng Comput 29:1–17

    PubMed  Google Scholar 

  31. Burr RL, Cowan MJ (1992) Autoregressive spectral models of heart rate variability. Practical issues. J Electrocardiol 25(Suppl):224–233

    Article  PubMed  Google Scholar 

  32. Cowan MJ, Burr RL, Narayanan SB, Buzaitis A, Strasser M, Busch S (1992) Comparison of autoregression and fast Fourier transform techniques for power spectral analysis of heart period variability of persons with sudden cardiac arrest before and after therapy to increase heart period variability. J Electrocardiol 25(Suppl):234–239

    Article  PubMed  Google Scholar 

  33. Berger RD, Akselrod S, Gordon D, Cohen RJ (1986) An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans Biomed Eng 33:900–904

    PubMed  Google Scholar 

  34. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90:1826–1831

    PubMed  Google Scholar 

  35. Lund V, Kentala E, Scheinin H, Klossner J, Sariola-Heinonen K, Jalonen J (2000) Hyperbaric oxygen increases parasympathetic activity in professional divers. Acta Physiol Scand 170:39–44

    Article  PubMed  Google Scholar 

  36. Kamath MV, Upton AR, Talalla A, Fallen EL (1992) Neurocardiac responses to vagoafferent electrostimulation in humans. Pacing Clin Electrophysiol 15:1581–1587

    PubMed  Google Scholar 

  37. Hedman AE, Hartikainen JE, Tahvanainen KU, Hakumäki MO (1992) Power spectral analysis of heart rate and blood pressure variability in anaesthetized dogs. Acta Physiol Scand 146:155–164

    PubMed  Google Scholar 

  38. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell‘Orto S, Piccaluga E et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    Google Scholar 

  39. Eckberg DL (1997) Sympathovagal balance. A critical appraisal. Circulation 96:3224–3232

    PubMed  Google Scholar 

  40. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 88:2297–2301

    PubMed  Google Scholar 

  41. Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, Goldberger AL (1995) Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol 28(Suppl):59–65

    Article  Google Scholar 

  42. Mäkikallio TH, Seppänen T, Airaksinen KEJ, Koistinen J, Tulppo MP, Peng CK, Goldberger AL, Huikuri HV (1997) Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 80:779–783

    Article  PubMed  Google Scholar 

  43. Mäkikallio TH, Høber S, Køber L, Torp-Pedersen C, Peng CK, Goldberger AL, Huikuri HV, Investigators ftT (1999) Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. Am J Cardiol 83:836–839

    Article  PubMed  Google Scholar 

  44. Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M (2000) Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101:47–53

    PubMed  Google Scholar 

  45. Penttilä J, Helminen A, Jartti T, Kuusela T, Huikuri HV, Tulppo MP, Scheinin H (2003) Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics. Auton Autacoid Pharmacol 23:173–179

    Article  PubMed  Google Scholar 

  46. Scheinin H, Helminen A, Huhtala S, Grönroos P, Bosch JA, Kuusela T, Kanto J, Kaila T (1999) Spectral analysis of heart rate variability as a quantitative measure of parasympatholytic effect—integrated pharmacokinetics and pharmacodynamics of three anticholinergic drugs. Ther Drug Monit 21:141–151

    Article  PubMed  Google Scholar 

  47. Alcalay M, Izraeli S, Wallach-Kapon R, Tochner Z, Benjamini Y, Akselrod S (1991) Pharmacological modulation of vagal cardiac control measured by heart rate power spectrum: a possible bioequivalent probe. Neurosci Biobehav Rev 15:51–55

    PubMed  Google Scholar 

  48. Penttilä J, Helminen A, Luomala K, Scheinin H (2001) Pharmacokinetic-pharmacodynamic model for the anticholinergic effect of glycopyrrolate. Eur J Clin Pharmacol 57:153–158

    Article  PubMed  Google Scholar 

  49. Penttilä J, Syvälahti E, Hinkka S, Kuusela T, Scheinin H (2001) The effects of amitriptyline, citalopram and reboxetine on autonomic nervous system. A randomised placebo-controlled study on healthy volunteers. Psychopharmacology (Berl) 154:343–349

    Article  Google Scholar 

  50. Rechlin T, Claus D, Weis M (1994) Heart rate analysis in 24 patients treated with 150 mg amitriptyline per day. Psychopharmacology (Berl) 116:110–114

    Google Scholar 

  51. Agelink MW, Majewski T, Wurthmann C, Lukas K, Ullrich H, Linka T, Klieser E (2001) Effects of newer atypical antipsychotics on autonomic neurocardiac function: a comparison between amisulpride, olanzapine, sertindole, and clozapine. J Clin Psychopharmacol 21:8–13

    PubMed  Google Scholar 

  52. Yeragani VK, Jampala VC, Sobelewski E, Kay J, Igel G (1999) Effects of paroxetine on heart period variability in patients with panic disorder: a study of Holter ECG records. Neuropsychobiology 40:124–128

    Article  PubMed  Google Scholar 

  53. Saul JP, Berger RD, Chen MH, Cohen RJ (1989) Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. Am J Physiol 256:H153–H161

    PubMed  Google Scholar 

  54. Ahmed MW, Kadish AH, Parker MA, Goldberger JJ (1994) Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J Am Coll Cardiol 24(4):1082–1090

    PubMed  Google Scholar 

  55. Hedman AE, Tahvanainen KU, Hartikainen JE, Hakumaki MO (1995) Effect of sympathetic modulation and sympatho-vagal interaction on heart rate variability in anaesthetized dogs. Acta Physiol Scand 155:205–214

    PubMed  Google Scholar 

  56. Penttilä J, Helminen A, Anttila M, Hinkka S, Scheinin H (2004) Cardiovascular and parasympathetic effects of dexmedetomidine in healthy subjects. Can J Physiol Pharmacol 82:359–362

    Article  PubMed  Google Scholar 

  57. Robertson HA, Leslie RA (1985) Noradrenergic alpha-2 binding sites in vagal dorsal motor nucleus and nucleus tractus solitarius: autoradiographic localization. Can J Physiol Pharmacol 63:1190–1194

    PubMed  Google Scholar 

  58. Toivonen L (1994) Influence of acute alpha 1-adrenergic antagonism on heart rate variability in patients with old myocardial infarction. J Cardiovasc Pharmacol 23:932–935

    PubMed  Google Scholar 

  59. Penttilä J, Kaila T, Helminen A, Anttila M, Karhuvaara S, Huhtala S, Scheinin H (2004) Effects of atipamezole—a selective alpha2-adrenoceptor antagonist—on cardiac parasympathetic regulation. Auton Autacoid Pharmacol 24:69–75

    Article  PubMed  Google Scholar 

  60. Jartti TT, Kuusela TA, Kaila TJ, Tahvanainen KU, Välimäki IA (1998) The dose-response effects of terbutaline on the variability, approximate entropy and fractal dimension of heart rate and blood pressure. Br J Clin Pharmacol 45:277–285

    Article  PubMed  Google Scholar 

  61. Hartikainen J, Tarkiainen I, Tahvanainen K, Mäntysaari M, Länsimies E, Pyörälä K (1993) Circadian variation of cardiac autonomic regulation during 24-h bed rest. Clin Physiol 13:185–196

    PubMed  Google Scholar 

  62. Hirsch JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol 241:H620–H629

    PubMed  Google Scholar 

  63. Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol 75:2310–2317

    PubMed  Google Scholar 

  64. Patwardhan A, Evans J, Bruce E, Knapp C (2001) Heart rate variability during sympatho-excitatory challenges: comparison between spontaneous and metronomic breathing. Integr Physiol Behav Sci 36:109–120

    PubMed  Google Scholar 

  65. Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL (1991) Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol 68:626–630

    Article  PubMed  Google Scholar 

  66. Dimier-David L, Billon N, Costagliola D, Jaillon P, Funck-Brentano C (1994) Reproducibility of non-invasive measurement and of short-term variability of blood pressure and heart rate in healthy volunteers. Br J Clin Pharmacol 38:109–115

    PubMed  Google Scholar 

  67. Schwartz JB, Gibb WJ, Tran T (1991) Aging effects on heart rate variation. J Gerontol 46:M99–M106

    PubMed  Google Scholar 

  68. Stanton T, Bolden Watson C, Cusack B, Richelson E (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol 45:2352–2354

    Article  PubMed  Google Scholar 

  69. Huikuri HV, Seppänen T, Koistinen MJ, Airaksinen KEJ, Ikäheimo MJ, Castellanos A, Myerburg RJ (1996) Abnormalities in beat-to-beat dynamics of heart rate before the spontaneous onset of life-threatening ventricular tachyarrhythmias in patients with prior myocardial infarction. Circulation 93:1836–1844

    PubMed  Google Scholar 

  70. Bigger JTJ, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN (1992) Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85:164–71

    PubMed  Google Scholar 

  71. De Ferrari GM, Salvati P, Grossoni M, Ukmar G, Vaga L, Patrono C, Schwartz PJ (1993) Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacholine and oxotremorine in conscious dogs with a healed myocardial infarction. J Am Coll Cardiol 22:283–290

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Scheinin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penttilä, J., Kuusela, T. & Scheinin, H. Analysis of rapid heart rate variability in the assessment of anticholinergic drug effects in humans. Eur J Clin Pharmacol 61, 559–565 (2005). https://doi.org/10.1007/s00228-005-0953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0953-2

Keywords

Navigation