Skip to main content
Log in

Rapid genotyping for relevant CYP1A2 alleles by pyrosequencing

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To develop a rapid and reliable screening method for identifying the relevant cytochrome P450 (CYP) 1A2 alleles CYP1A2*1D (−2467Tdel), *1F (−163A>C), and *1K (−739T>G, −729C>T, −163A>C) that are in linkage disequilibrium with the functionally relevant CYP1A2 polymorphisms and therefore are considered to be predictive for the CYP1A2 phenotype.

Methods

CYP1A2 single nucleotide polymorphisms (SNPs) −2467Tdel, −739T>G, −729C>T, and −163A>C were screened for in 495 healthy Caucasian volunteers using newly developed pyrosequencing duplex and simplex assays. Conventional sequencing of randomly selected samples served as quality control.

Results

Frequencies were 7.9% for CYP1A2*1D, 31.8% for *1F, and 0.4% for *1K. The observed distribution of homozygous and heterozygous carriers of the alleles corresponded to the predicted one according to the Hardy-Weinberg law. It also corresponded to reported allelic frequencies from Caucasians but differed significantly from the distribution seen in other ethnicities. The most frequent haplotype was −2467T/−739T/−729C/−163A (allelic frequency 61.6%), followed by −2467T/−739T/−729C/−163C (30.5%), −2467Tdel/−739T/−729C/−163A (5.1%), −2467Tdel/−739G/−729C/−163A (1.2%), and −2467Tdel/−739T/−729C/−163C (1.1%). Complete linkage disequilibrium (value of D’ nearly 1) existed between −2467Tdel, −739T>G, and −729C>T and between −729T>G and −163A>C.

Conclusions

Pyrosequencing facilitates rapid and reliable detection of those CYP1A2 alleles that, based on current knowledge, can be considered predictive for the CYP1A2 phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brosen K (1995) Drug interactions and the cytochrome P450 system. The role of cytochrome P450 1A2. Clin Pharmacokinet 29 (Suppl 1):20–25

    Article  PubMed  Google Scholar 

  2. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47(4):445–449

    Article  PubMed  CAS  Google Scholar 

  3. Nordmark A, Lundgren S, Ask B, Granath F, Rane A (2002) The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women. Br J Clin Pharmacol 54(5):504–510

    Article  PubMed  CAS  Google Scholar 

  4. Aklillu E, Carrillo JA, Makonnen E, et al (2003) Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol 64(3):659–669

    Article  PubMed  CAS  Google Scholar 

  5. Shimoda K, Someya T, Morita S, et al. (2002) Lack of impact of CYP1A2 genetic polymorphism (C/A polymorphism at position 734 in intron 1 and G/A polymorphism at position −2964 in the 5′–flanking region of CYP1A2) on the plasma concentration of haloperidol in smoking male Japanese with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 26(2):261–265

    Article  PubMed  CAS  Google Scholar 

  6. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T (1999) Genetic polymorphism in the 5′–flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 125(4):803–808

    CAS  Google Scholar 

  7. Allorge D, Chevalier D, Lo–Guidice JM, et al (2003) Identification of a novel splice–site mutation in the CYP1A2 gene. Br J Clin Pharmacol 56(3):341–344

    Article  PubMed  CAS  Google Scholar 

  8. Murayama N, Soyama A, Saito Y, et al (2004) Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J Pharmacol Exp Ther 308(1):300–306

    Article  PubMed  CAS  Google Scholar 

  9. Sachse C, Bhambra U, Smith G, et al (2003) Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 55(1):68–76

    Article  PubMed  CAS  Google Scholar 

  10. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11(1):3–11

    Article  PubMed  CAS  Google Scholar 

  11. Lewontin RC (1964) The interaction of selection and linkage. II. Optimum models. Genetics 50:757–782

    Google Scholar 

  12. Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15(7):1502–1506

    Article  PubMed  CAS  Google Scholar 

  13. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73(5):1162–1169

    Article  PubMed  CAS  Google Scholar 

  14. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  PubMed  CAS  Google Scholar 

  15. Soyama A, Saito Y, Hanioka N, et al (2005) Single nucleotide polymorphisms and haplotypes of CYP1A2 in a Japanese population. Drug Metab Pharmacokinet 20(1):24–33

    Google Scholar 

  16. Dandara C, Basvi PT, Bapiro TE, Sayi J, Hasler JA (2004) Frequency of −163 C>A and 63 C>G single nucleotide polymorphism of cytochrome P450 1A2 in two African populations. Clin Chem Lab Med 42(8):939–941

    Article  PubMed  CAS  Google Scholar 

  17. Chida M, Yokoi T, Fukui T, Kinoshita M, Yokota J, Kamataki T (1999) Detection of three genetic polymorphisms in the 5′–flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res 90(9):899–902

    PubMed  CAS  Google Scholar 

  18. Basile VS, Ozdemir V, Masellis M, et al (2000) A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol Psychiatry 5(4):410–417

    Article  PubMed  CAS  Google Scholar 

  19. Christiansen L, Bygum A, Jensen A, et al (2000) Association between CYP1A2 polymorphism and susceptibility to porphyria cutanea tarda. Hum Genet 107(6):612–614

    Article  PubMed  Google Scholar 

  20. Aitchison KJ, Gonzalez FJ, Quattrochi LC, et al (2000) Identification of novel polymorphisms in the 5′ flanking region of CYP1A2, characterization of interethnic variability, and investigation of their functional significance. Pharmacogenetics 10(8):695–704

    Article  PubMed  CAS  Google Scholar 

  21. Han XM, Ou–Yang DS, Lu PX, et al (2001) Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G–2964A and C734A polymorphisms of human CYP1A2. Pharmacogenetics 11(5):429–435

    Article  PubMed  CAS  Google Scholar 

  22. Goodman MT, McDuffie K, Kolonel LN, et al (2001) Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol Biomarkers Prev 10(3):209–216

    Google Scholar 

  23. Cornelis MC, El–Sohemy A, Campos H (2004) Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction. J Med Genet 41(10):758–762

    Article  PubMed  CAS  Google Scholar 

  24. Schrenk D, Brockmeier D, Morike K, Bock KW, Eichelbaum M (1998) A distribution study of CYP1A2 phenotypes among smokers and non-smokers in a cohort of healthy Caucasian volunteers. Eur J Clin Pharmacol 53(5):361–367

    Article  PubMed  CAS  Google Scholar 

  25. Rasmussen BB, Brosen K (1996) Determination of urinary metabolites of caffeine for the assessment of cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activity in humans. Ther Drug Monit 18(3):254–262

    Article  PubMed  CAS  Google Scholar 

  26. Hamdy SI, Hiratsuka M, Narahara K, et al (2003) Genotyping of four genetic polymorphisms in the CYP1A2 gene in the Egyptian population. Br J Clin Pharmacol 55(3):321–324

    Article  PubMed  CAS  Google Scholar 

  27. Todesco L, Torok M, Krahenbuhl S, Wenk M (2003) Determination of −3858G−>A and −164C−>A genetic polymorphisms of CYP1A2 in blood and saliva by rapid allelic discrimination: large difference in the prevalence of the −3858G−>A mutation between Caucasians and Asians. Eur J Clin Pharmacol 59(4):343–346

    Article  PubMed  CAS  Google Scholar 

  28. Han XM, Chen XP, Wu QN, Jiang CH, Zhou HH (2000) G–2964A and C734A genetic polymorphisms of CYP1A2 in Chinese population. Acta Pharmacol Sin 21(11):1031–1034

    PubMed  CAS  Google Scholar 

  29. Han XM, Ouyang DS, Chen XP, et al (2002) Inducibility of CYP1A2 by omeprazole in vivo related to the genetic polymorphism of CYP1A2. Br J Clin Pharmacol 54(5):540–543

    Google Scholar 

  30. Goodman MT, Tung KH, McDuffie K, Wilkens LR, Donlon TA (2003) Association of caffeine intake and CYP1A2 genotype with ovarian cancer. Nutr Cancer 46(1):23–29

    Article  PubMed  CAS  Google Scholar 

  31. Schulze TG, Schumacher J, Muller DJ, et al (2001) Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. Am J Med Genet 105(6):498–501

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Experiments comply with the current laws, inclusive of ethics approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Skarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skarke, C., Kirchhof, A., Geisslinger, G. et al. Rapid genotyping for relevant CYP1A2 alleles by pyrosequencing. Eur J Clin Pharmacol 61, 887–892 (2005). https://doi.org/10.1007/s00228-005-0029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0029-3

Keywords

Navigation