Skip to main content

Advertisement

Log in

In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time-of-flight mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Human phase I metabolism of four designer drugs, 2-desoxypipradrol (2-DPMP), 3,4-dimethylmethcathinone (3,4-DMMC), α-pyrrolidinovalerophenone (α-PVP), and methiopropamine (MPA), was studied using in silico and in vitro metabolite prediction. The metabolites were identified in drug abusers’ urine samples using liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/Q-TOF/MS). The aim of the study was to evaluate the ability of the in silico and in vitro methods to generate the main urinary metabolites found in vivo. Meteor 14.0.0 software (Lhasa Limited) was used for in silico metabolite prediction, and in vitro metabolites were produced in human liver microsomes (HLMs). 2-DPMP was metabolized by hydroxylation, dehydrogenation, and oxidation, resulting in six phase I metabolites. Six metabolites were identified for 3,4-DMMC formed via N-demethylation, reduction, hydroxylation, and oxidation reactions. α-PVP was found to undergo reduction, hydroxylation, dehydrogenation, and oxidation reactions, as well as degradation of the pyrrolidine ring, and seven phase I metabolites were identified. For MPA, the nor-MPA metabolite was detected. Meteor software predicted the main human urinary phase I metabolites of 3,4-DMMC, α-PVP, and MPA and two of the four main metabolites of 2-DPMP. It assisted in the identification of the previously unreported metabolic reactions for α-PVP. Eight of the 12 most abundant in vivo phase I metabolites were detected in the in vitro HLM experiments. In vitro tests serve as material for exploitation of in silico data when an authentic urine sample is not available. In silico and in vitro designer drug metabolism studies with LC/Q-TOF/MS produced sufficient metabolic information to support identification of the parent compound in vivo.

Structures of the designer drugs studied: 2-DPMP, 3,4-DMMC, α-PVP, and MPA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. European Monitoring Centre for Drugs and Drug Addiction (2012) The State of the Drugs Problem in Europe, Annual Report, Lisbon, Portugal. http://www.emcdda.europa.eu/publications/annual-report/2012. Accessed 30 Apr 2013

  2. European Monitoring Centre for Drugs and Drug Addiction, and Europol (joint publication) (2013) EU Drug Markets Report: a Strategic Analysis, Lisbon, Portugal; The Hague, The Netherlands. http://www.emcdda.europa.eu/publications/joint-publications/drug-markets. Accessed 30 Apr 2013

  3. Meyer MR, Maurer HH (2010) Curr Drug Metab 11:468–482

    Article  CAS  Google Scholar 

  4. Maurer HH (2010) Ther Drug Monit 32:544–549

    Article  CAS  Google Scholar 

  5. Staack RF, Maurer HM (2005) Curr Drug Metab 6:259–274

    Article  CAS  Google Scholar 

  6. Peters FT, Meyer MR (2011) Drug test. Analysis 3:483–495

    CAS  Google Scholar 

  7. Kuuranne T, Leinonen A, Schänzer W, Kamber M, Kostiainen R, Thevis M (2008) Drug Metab Dispos 36:571–581

    Article  CAS  Google Scholar 

  8. Kuuranne T, Pystynen KH, Thevis M, Leinonen A, Schänzer W, Kostiainen R (2008) Eur J Mass Spectrom 14:181–189

    Article  CAS  Google Scholar 

  9. Beuck S, Schaenzer W, Thevis M (2011) J Mass Spectrom 46:112–130

    Article  CAS  Google Scholar 

  10. Thevis M, Thomas A, Schänzer W (2011) Anal Bioanal Chem 401:405–420

    Article  CAS  Google Scholar 

  11. Meyer MR, Maurer HH (2012) Anal Bioanal Chem 403:1221–1231

    Article  CAS  Google Scholar 

  12. Ketola RA, Mauriala T (2012) Eur J Pharm Sci 46:293–314

    Article  CAS  Google Scholar 

  13. Liang Y, Wang G, Xie L, Sheng L (2011) Curr Drug Metab 12:329–344

    Article  CAS  Google Scholar 

  14. Hakala K, Kostiainen R, Ketola RA (2006) Rapid Commun Mass Spectrom 20:2081–2090

    Article  CAS  Google Scholar 

  15. Grabenauer M, Krol WL, Wiley JL, Thomas BF (2012) Anal Chem 84:5574–5581

    Article  CAS  Google Scholar 

  16. Wissenbach DK, Meyer MR, Remane D, Weber AA, Maurer HH (2011) Anal Bioanal Chem 400:79–88

    Article  CAS  Google Scholar 

  17. T’jollyn H, Boussery K, Mortishire-Smith RJ, Coe K, De Boeck B, Van Bocxlaer JF, Mannens G (2011) Drug Metab Dispos 39:2066–2075

    Article  Google Scholar 

  18. Valerio LG, Long A (2010) Curr Drug Discovery Technol 7:170–187

    CAS  Google Scholar 

  19. Wu G, Vashishtha SC, Erve JCL (2010) Chem Res Toxicol 23:1393–1404

    Article  CAS  Google Scholar 

  20. Pelander A, Tyrkkö E, Ojanperä I (2009) Rapid Commun Mass Spectrom 23:506–514

    Article  CAS  Google Scholar 

  21. Stranz DD, Miao S, Campbell S, Maydwell G, Ekins S (2008) Toxicol Mech Methods 18:243–250

    Article  CAS  Google Scholar 

  22. Sauer C, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) J Mass Spectrom 44:952–964

    Article  CAS  Google Scholar 

  23. Shima N, Katagi M, Kamata H, Matsuta S, Nakanishi K, Zaitsu K, Kamata T, Nishioka H, Miki A, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2013) Forensic Toxicol 31:101–112

    Article  CAS  Google Scholar 

  24. Welter J, Meyer MR, Wolf EU, Weinman W, Kavanagh P, Maurer HH (2013) Anal Bioanal Chem 405:3125–3135

    Article  CAS  Google Scholar 

  25. Laks S, Pelander A, Vuori E, Ali-Tolppa E, Sippola E, Ojanperä I (2004) Anal Chem 76:7375–7379

    Article  CAS  Google Scholar 

  26. de Castro A, Gergov M, Östman P, Ojanperä I, Pelander A (2012) Anal Bioanal Chem 403:1265–1278

    Article  Google Scholar 

  27. Ojanperä I, Heikman P, Rasanen I (2011) Ther Drug Monit 33:257–263

    Google Scholar 

  28. Paar WD, Frankus P, Dengler HJ (1996) J Chromatogr B 686:221–227

    Article  CAS  Google Scholar 

  29. Langowski J, Long A (2002) Adv Drug Deliv Rev 54:407–415

    Article  CAS  Google Scholar 

  30. Button WG, Judson PN, Long A, Vessey JD (2003) J Chem Inf Comput Sci 43:1371–1377

    Article  CAS  Google Scholar 

  31. Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010) Anal Bioanal Chem 397:1225–1233

    Article  CAS  Google Scholar 

  32. Baselt RC (2011) Disposition of toxic drugs and chemicals in man, 9th edn. Biomedical, Seal Beach

    Google Scholar 

  33. Dalvie DK, Kalgutkar AS, Khojasteh-Bakht SC, Obach RS, O’Donnell JP (2002) Chem Res Toxicol 15:269–299

    Article  CAS  Google Scholar 

  34. Ojanperä S, Pelander A, Pelzing M, Krebs I, Vuori E, Ojanperä I (2006) Rapid Commun Mass Spectrom 20:1161–1167

    Article  Google Scholar 

  35. Tyrkkö E, Pelander A, Ojanperä I (2010) Drug Test Anal 2:259–270

    Article  Google Scholar 

  36. Zurek G, Krebs I, Goetz S, Scheible H, Laufer S, Kammerer B, Albrecht W (2008) LC-GC Europe 31–33

  37. Cashman JR (2000) Curr Drug Metab 1:181–191

    Article  CAS  Google Scholar 

  38. Springer D, Fritschi G, Maurer HH (2003) J Chromatogr B 796:253–266

    Article  CAS  Google Scholar 

  39. Springer D, Peters FT, Fritschi G, Maurer HH (2003) J Chromatogr B 789:79–91

    Article  CAS  Google Scholar 

  40. Springer D, Peters FT, Fritschi G, Maurer HH (2002) J Chromatogr B 773:25–33

    Article  CAS  Google Scholar 

  41. Springer D, Fritschi G, Maurer HH (2003) J Chromatogr B 793:331–342

    Article  CAS  Google Scholar 

  42. Springer D, Fritschi G, Maurer HH (2003) J Chromatogr B 793:377–388

    Article  CAS  Google Scholar 

  43. Peters FT, Meyer MR, Fritschi G, Maurer HH (2005) J Chromatogr B 824:81–91

    Article  CAS  Google Scholar 

  44. Meyer MR, Du P, Schuster F, Maurer HH (2010) J Mass Spectrom 45:1426–1442

    Article  CAS  Google Scholar 

  45. Pelkonen O, Tolonen A, Rousu T, Tursas L, Turpeinen M, Hokkanen J, Uusitalo J, Bouvier d’Yvoire, Coecke S (2009) ALTEX 26:214–222

    Google Scholar 

  46. Lin JH, Lu AYH (1997) Pharmacol Rev 49:403–449

    CAS  Google Scholar 

  47. Pedersen AJ, Reitzel LA, Johansen SS, Linnet K (2012) Drug test. Analysis. doi:10.1002/dta.1369

    Google Scholar 

  48. Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Forensic Sci Int 188:131–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elli Tyrkkö.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyrkkö, E., Pelander, A., Ketola, R.A. et al. In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time-of-flight mass spectrometry. Anal Bioanal Chem 405, 6697–6709 (2013). https://doi.org/10.1007/s00216-013-7137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7137-1

Keywords

Navigation