Skip to main content
Log in

Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The genotoxic potential of waters in six rivers and reservoirs from Serbia was monitored in different tissues of chub (Squalius cephalus L. 1758) with the alkaline comet assay. The comet assay, or single-cell gel electrophoresis, has a wide application as a simple and sensitive method for evaluating DNA damage in fish exposed to various xenobiotics in the aquatic environment. Three types of cells, erythrocytes, gill cells, and liver cells, were used for assessing DNA damage. Images of randomly selected cells were analyzed with a Leica fluorescence microscope and image analysis by software (Comet Assay IV Image analysis system, PI, UK). Three parameters (tail length—l, tail intensity—i, and Olive tail moment—m) were analyzed on 1,700 nuclei per cell type. The procedure for sum of ranking differences (SRD) was implemented to compare different types of cells and different parameters for estimation of DNA damage. Regarding our nine different estimations of genotoxicity: tail length, intensity, and moment in erythrocytes (rel, rei, rem), liver cells (rll, rli, rlm), and gill cells (rgl, rgi, rgm), the SRD procedure has shown that the Olive tail moment and tail intensity are (almost) equally good parameters; the SRD value was lower for the tail moment and tail intensity than for tail length in the case of all types of cells. The least reliable parameter was rel; close to the borderline case were rei, rll, and rgl (∼5 % probability of random ranking).

Comparison of comet assay parameters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  2. Kumaravel TS, Vilhar B, Faux SP, Jha AN (2009) Cell Biol Toxicol 25:53–64

    Article  CAS  Google Scholar 

  3. Frenzilli G, Nigro M, Lyons BP (2009) Mutation Res 681:80–92

    Article  CAS  Google Scholar 

  4. Meybodi AM, Mozdarani H (2009) Iranian Biomed J 13:1–8

    CAS  Google Scholar 

  5. Kolarević S, Knežević-Vukčević J, Paunović M, Tomović J, Gačić Z, Vuković-Gačić B (2011) Arch Biol Sci 63(4):1209–1217

    Article  Google Scholar 

  6. Sunjog K, Gačić Z, Kolarević S, Višnjić-Jeftić Ž, Jarić I, Knežević-Vukčević J, Vuković-Gačić B, Lenhardt M (2012) The Scientific World Journal. doi:10.1100/2012/351074

  7. Bernardeschi M, Guidi P, Scarcelli V, Frenzilli G, Nigro M (2010) Anal Bioanal Chem 396:619–623

    Article  CAS  Google Scholar 

  8. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Environ Molec Mutagenesis 35:206–221

    Article  CAS  Google Scholar 

  9. Héberger K (2010) Trends Anal Chem 29:101–109

    Article  Google Scholar 

  10. Héberger K, Kollár-Hunek K (2011) J Chemometr 25:151–158

    Article  Google Scholar 

  11. Olive PL, Banath JP, Durand RE (1990) Radiation Res 122:86–94

    Article  CAS  Google Scholar 

  12. Bolboaca SD, Jaentschi L (2010) Studia Univ Babes-Bolyai Chem 55:69–76

    CAS  Google Scholar 

  13. Djakovic-Sekulic T, Mandic A, Trisovic N, Uscumlic G (2012) Current Computer Aided Drug Design 8:3–9

    Article  CAS  Google Scholar 

  14. Garkani-Nejad Z, Ahmadvand M (2011) Chromatographia 73:733–742

    Article  CAS  Google Scholar 

  15. Kar S, Roy K (2012) Chemosphere 87:339–355

    Article  CAS  Google Scholar 

  16. Liu XH, Ren YR, Zhou P, Shang ZC (2011) J Molec Struct 995:163–172

    Article  CAS  Google Scholar 

  17. Ojha PK, Roy K (2011) Chemometr Intell Lab Syst 109:146–161

    Article  CAS  Google Scholar 

  18. Vajna B, Farkas A, Pataki H, Zsigmond Z, Igricz T, Marosi G (2012) Anal Chim Acta 712:45–55

    Article  CAS  Google Scholar 

  19. Héberger K, Zenkevich IG (2010) J Chromatogr A 1217:2895–2902

    Article  Google Scholar 

  20. Bielicka-Daszkiewicz K, Voelkel A, Pietrzyńska M, Héberger K (2010) J Chromatogr A 1217:5564–5570

    Article  CAS  Google Scholar 

  21. Gowen AA, Downey G, Esquerre C, O’Donnell CP (2011) J Chemomet 25:375–381

    Article  CAS  Google Scholar 

  22. Vajna B, Patyi G, Nagy Z, Bodis A, Farkas A, Marosi G, Raman J (2011) Spectr 42:1977–1986

    CAS  Google Scholar 

  23. Kollár-Hunek K, Heszberger J, Kókai Z, Láng-Lázi M, Papp E (2008) J Chemometr 22:218–226

    Article  Google Scholar 

  24. Sipos L, Kovács Z, Szöllösi D, Kókai Z, Dalmádi I, Fekete A (2011) J Chemometr 25:275–286

    Article  CAS  Google Scholar 

  25. Rocha MJ, Ferreira PC, Reis PA, Cruzeiro C, Rocha E (2011) J Chromatogr Sci 49:695–701

    Article  CAS  Google Scholar 

  26. Acanski MM, Vujic DN, Jovanovic-Santa S (2011) Chem Ind Chem Eng Quart 17:535–542

    Article  CAS  Google Scholar 

  27. Balogh GT, Tarcsay A, Keseru GM (2012) J Pharm Biomed Anal 67–68:63–70

    Article  Google Scholar 

  28. Tangni EK, Motte JC, Callebaut A, Chandelier A, De Schrijver M, Marnix L, Pussemier L (2011) Mycotoxin Res 27:105–113

    Article  CAS  Google Scholar 

  29. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  30. Çok I, Ulutaş OK, Okuşluk O, Durmaz E, Demir N (2011) The Scientific World Journal 11:1455–1461

    Article  Google Scholar 

  31. Vincent-Hubert F, Arini A, Gourlay-Francé C (2011) Mutation Res 723:26–35

    Article  CAS  Google Scholar 

  32. Morin B, Filatreau J, Vicquelin L, Barjhoux I, Guinel S, Leray-Forget J, Cachot J (2011) Anal Bioanal Chem 399:2235–2242

    Article  CAS  Google Scholar 

  33. Kumaravel TS, Jha AN (2006) Mutation Res 605:7–16

    Article  CAS  Google Scholar 

  34. Rosenberger A, Rössler U, Hornhardt S, Sauter W, Bickeböller H, Wichmann HE, Gomolka M (2011) DNA Repair 10:322–337

    Article  CAS  Google Scholar 

  35. Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Štetina R (2008) Mutagenesis 23:143–151

    Article  CAS  Google Scholar 

  36. Speit G, Hartmann A (1999) Meth Mol Biol 113:203–212

    Article  CAS  Google Scholar 

  37. Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A (2007) Mutation Res 627:31–35

    Article  CAS  Google Scholar 

  38. Collins AR (2004) Mol Biotechn 26:249–261

    Article  CAS  Google Scholar 

  39. Rajaguru P, Suba S, Palanivel M, Kalaiselvi K (2003) Environ Molec Mutagenesis 41:85–91

    Article  CAS  Google Scholar 

  40. De Andrade VM, Da Silva J, Da Silva FR, Heuser VD, Dias JF, Yoneama ML, De Freitas TRO (2004) Environ Molec Mutagenesis 44:459–468

    Article  Google Scholar 

  41. Pandrangi R, Petras M, Ralph S, Vrzoc M (1995) Environ Molec Mutagenesis 26:345–356

    Article  CAS  Google Scholar 

  42. Alink GM, Quik JTK, Penders EJM, Spenkelink A, Rotteveel SGP, Maas JL, Hoogenboezem W (2007) Mutation Res 631:93–100

    Article  CAS  Google Scholar 

  43. Sharma S, Nagpure NS, Kumar R, Pandey S, Srivastava SK, Singh PJ, Mathur PK (2007) Arch Environ Contam Toxicol 53:617–623

    Article  CAS  Google Scholar 

  44. Wirzinger G, Weltje L, Gercken J, Sordyl H (2007) Mutation Res 628:19–30

    Article  CAS  Google Scholar 

  45. Pandeya AK, Nagpurea NS, Trivedib SP, Kumara R, Kushwahaa B (2011) Mutation Res 726:209–214

    Article  Google Scholar 

  46. Kopjar N, Mustafic P, Zanella D, Buj I, Caleta M, Marcic Z, Milic M, Dolenec Z, Mrakovcic M (2008) Folia Zool 57:120–130

    Google Scholar 

  47. Cotelle S, Férard JF (1999) Environ Molec Mutagenesis 34:246–255

    Article  CAS  Google Scholar 

  48. Abd-Allaha GA, El-Fayoumib RI, Smith MJ, Heckmann RA, O'Neill KL (1999) Mutation Res 446:181–188

    Article  Google Scholar 

  49. Suicmez M, Kayim M, Koseoglu D, Hasdemir E (2006) Bull Environ Contam Toxicol 77:551–558

    Article  CAS  Google Scholar 

  50. Kilemade MF, Hartl MGJ, Sheehan D, Mothersill C, Van Pelt FNAM, O’Halloran J, O’Brien NM (2004) Environ Mol Mutagen 44:56–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study represents a part of the activities within project no. 173045, funded by the Ministry of Education and Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sunjog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunjog, K., Kolarević, S., Héberger, K. et al. Comparison of comet assay parameters for estimation of genotoxicity by sum of ranking differences. Anal Bioanal Chem 405, 4879–4885 (2013). https://doi.org/10.1007/s00216-013-6909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6909-y

Keywords

Navigation