Skip to main content
Log in

In-vitro oxidation of bisphenol A: Is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A?

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The extensive use of bisphenol A (BPA) in the manufacture of consumer products results in widespread human exposure to the chemical. In the body, BPA undergoes first-pass metabolism to form BPA glucuronide, considered to be a major BPA byproduct. Concentrations of total (free plus conjugated) urinary species of BPA are used to assess human exposure to BPA. However, because BPA can be present in numerous consumer and household products, potential contamination with parent BPA during collection and handling may pose a challenge when measuring BPA in such biological samples as blood or urine. In this study we investigated the in-vitro phase I metabolism of BPA in rat and human liver microsomes by using on-line solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry to identify phase I metabolites (e.g., BPA oxidation products) that could be used as potential alternative biomarkers of BPA exposure. We unambiguously identified 5-hydroxy BPA (BPA catechol) as an in-vitro oxidative metabolite of BPA, but human microsomes oxidized only about 10% of BPA to BPA catechol. We evaluated the usefulness of BPA catechol as a potential biomarker of human exposure to BPA by measuring total concentrations of BPA catechol and BPA in 20 urine samples. We detected BPA catechol at much lower concentrations and frequency than those of BPA. Furthermore, we found that free BPA catechol was rather unstable in urine, which highlights the importance of sampling techniques to adequate interpretation of biomonitoring data. Together, these findings suggest that BPA catechol may not be a suitable biomarker of environmental exposure to BPA, but could be used to confirm BPA exposure in special populations or in situations when urine specimens were potentially contaminated with BPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chapin RE, Adams J, Boekelheide K, Gray LE, Hayward SW, Lees PSJ, McIntyre BS, Portier KM, Schnorr TM, Selevan SG, Vandenbergh JG, Woskie SR (2008) Birth Defects Res B Dev Reprod Toxicol 83:157–395

    Article  CAS  Google Scholar 

  2. National Toxicology Program (2008) NTP Brief on Bisphenol A (CAS no. 80-05-07)

  3. Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Portier CJ, McDonnell DP (1997) Toxicol Appl Pharmacol 143:205–212

    Article  CAS  Google Scholar 

  4. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Endocrinology 132:2279–2286

    Article  CAS  Google Scholar 

  5. Morrisey RE, George JD, Price CJ, Tyl RW, Marr MC, Kimmel CA (1987) Fundam Appl Toxicol 8:571–582

    Article  Google Scholar 

  6. Yamasaki K, Sawaki M, Takatsuki M (2000) Environ Health Perspect 108:1147–1150

    Article  CAS  Google Scholar 

  7. European Union (2008) Updated European Risk Assessment Report 4,4′-Isopropylidenediphenol (Bisphenol-A). Environment Addendum of February 2008 (to be read in conjunction with published EU RAR of BPA, 2003 for full details) European Union,

  8. vom Saal FS, Hughes C (2005) Environ Health Perspect 113:926–933

    Article  Google Scholar 

  9. Lee YJ, Ryu HY, Kim HY, Min CS, Lee JH, Kim E, Nam BH, Park JH, Jung JY, Jang DD, Park EY, Lee KH, Ma JY, Won HS, Im MW, Leem JH, Hong YC, Yoon HS (2008) Reprod Toxicol 25:413–419

    Article  CAS  Google Scholar 

  10. Calafat AM, Ye XY, Wong LY, Reidy JA, Needham LL (2008) Environ Health Perspect 116:39–44

    Article  CAS  Google Scholar 

  11. Kim YH, Kim CS, Park S, Han SY, Pyo MY, Yang MH (2003) Biochem Biophys Res Commun 312:441–448

    Article  CAS  Google Scholar 

  12. Matsumoto A, Kunugita N, Kitagawa K, Isse T, Oyama T, Foureman GL, Morita M, Kawamoto T (2003) Environ Health Perspect 111:101–104

    Article  CAS  Google Scholar 

  13. Ouchi K, Watanabe S (2002) J Chromatogr B Anal Technol Biomed Life Sci 780:365–370

    Article  CAS  Google Scholar 

  14. Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA, Chelimo C, Godbold J, Biro F, Kushi LH, Pfeiffer CM, Calafat AM (2007) Environ Health Perspect 115:116–121

    Article  CAS  Google Scholar 

  15. Yang M, Kim SY, Chang SS, Lee IS, Kawamoto T (2006) Environ Mol Mutagen 47:571–578

    Article  CAS  Google Scholar 

  16. Yang MH, Kim SY, Lee SM, Chang SS, Kawamoto T, Jang JY, Ahn YO (2003) Arch Environ Contam Toxicol 44:546–551

    Article  CAS  Google Scholar 

  17. Ye XY, Kuklenyik Z, Needham LL, Calafat AM (2005) Anal Bioanal Chem 383:638–644

    Article  CAS  Google Scholar 

  18. Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W (2002) Chem Res Toxicol 15:1281–1287

    Article  Google Scholar 

  19. Moss T, Howes D, Williams FM (2000) Food Chem Toxicol 38:361–370

    Article  CAS  Google Scholar 

  20. Hissink AM, Dunnewijk R, VanOmmen B, VanBladeren PJ (1997) Chem Biol Interact 103:17–33

    Article  CAS  Google Scholar 

  21. Ye XY, Bishop AM, Reidy JA, Needham LL, Calafat AM (2006) Environ Health Perspect 114:1843–1846

    CAS  Google Scholar 

  22. Kadry AM, Okereke CS, Abdelrahman MS, Friedman MA, Davis RA (1995) J Appl Toxicol 15:97–102

    Article  CAS  Google Scholar 

  23. Okereke CS, Kadry AM, Abdelrahman MS, Davis RA, Friedman MA (1993) Drug Metab Dispos 21:788–791

    CAS  Google Scholar 

  24. Kurebayashi H, Harada R, Stewart RK, Numata H, Ohno Y (2002) Toxicol Sci 68:32–42

    Article  CAS  Google Scholar 

  25. Pottenger LH, Domoradzki JY, Markham DA, Hansen SC, Cagen SZ, Waechter JM (2000) Toxicol Sci 54:3–18

    Article  CAS  Google Scholar 

  26. Pritchett JJ, Kuester RK, Sipes IG (2002) Drug Metab Dispos 30:1180–1185

    Article  CAS  Google Scholar 

  27. Snyder RW, Maness SC, Gaido KW, Welsch F, Sumner SCJ, Fennell TR (2000) Toxicol Appl Pharmacol 168:225–234

    Article  CAS  Google Scholar 

  28. Knaak JB, Sullivan LJ (1966) Toxicol Appl Pharmacol 8:175–184

    Article  CAS  Google Scholar 

  29. Yoshihara S, Makishima M, Suzuki N, Ohta S (2001) Toxicol Sci 62:221–227

    Article  CAS  Google Scholar 

  30. Matthews JB, Twomey K, Zacharewski TR (2001) Chem Res Toxicol 14:149–157

    Article  CAS  Google Scholar 

  31. Nakagawa Y, Suzuki T (2001) Xenobiotica 31:113–123

    Article  CAS  Google Scholar 

  32. Atkinson A, Roy D (1995) Environ Mol Mutagen 26:60–66

    Article  CAS  Google Scholar 

  33. Atkinson A, Roy D (1995) Biochem Biophys Res Commun 210:424–433

    Article  CAS  Google Scholar 

  34. Edmonds JS, Nomachi M, Terasaki M, Morita M, Skelton BW, White AH (2004) Biochem Biophys Res Commun 319:556–561

    Article  CAS  Google Scholar 

  35. Waechter J, Domoradzki J, Thornton C, Markham D (2007) Toxicol Mech Method 17:13–24

    Article  CAS  Google Scholar 

  36. Watabe Y, Kondo T, Imai H, Morita M, Tanaka N, Hosoya K (2004) Anal Chem 76:105–109

    Article  CAS  Google Scholar 

  37. Ye XY, Bishop AM, Reidy JA, Needham LL, Calafat AM (2007) J Expos Sci Environ Epidemiol 17:567–572

    Article  CAS  Google Scholar 

  38. Ye X, Tao LJ, Needham LL, Calafat AM (2008) Talanta 76:865–871

    Article  CAS  Google Scholar 

  39. Hornung RW, Reed LD (1990) Appl Occup Environ Hyg 5:46–51

    Article  CAS  Google Scholar 

  40. Elsby R, Maggs JL, Ashby J, Park BK (2001) J Pharmacol Exp Ther 297:103–113

    CAS  Google Scholar 

  41. Calafat AM, Weuve J, Ye XY, Jia LT, Hu H, Ringer S, Huttner K, Hauser R (2009) Environ Health Perspect 117:639–644

    CAS  Google Scholar 

  42. Chin YP, Miller PL, Zeng LK, Cawley K, Weavers LK (2004) Environ Sci Technol 38:5888–5894

    Article  CAS  Google Scholar 

  43. Suzuki T, Nakagawa Y, Takano I, Yaguchi K, Yasuda K (2004) Environ Sci Technol 38:2389–2396

    Article  CAS  Google Scholar 

Download references

Disclaimer

The use of trade names is for identification only and does not constitute endorsement by the US Department of Health and Human Services or the Centers for Disease Control and Prevention. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Ye.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Zhou, X., Needham, L.L. et al. In-vitro oxidation of bisphenol A: Is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A?. Anal Bioanal Chem 399, 1071–1079 (2011). https://doi.org/10.1007/s00216-010-4344-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4344-x

Keywords

Navigation