Skip to main content
Log in

Role of the guanine nucleotide binding protein, Gαo, in the development of morphine tolerance and dependence

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The use of morphine and other opioids for chronic pain is limited by the development of analgesic tolerance and physical dependence. Morphine produces its effects by activating the μ opioid receptor, which couples to Gαi/o-containing heterotrimeric G proteins. Evidence suggests that the antinociceptive effects of morphine are mediated by Gαo. However, the role of Gαo in the development of morphine tolerance and dependence is unknown.

Objective

The objective of the study is to evaluate the contribution of Gαo to the development of morphine tolerance and dependence in mice.

Methods

129S6 mice lacking one copy of the Gαo gene (Gαo +/−) were administered morphine acutely or chronically. Mice were examined for tolerance to the antinociceptive action of morphine using the 52 °C hot plate as the nociceptive stimulus and for dependence by evaluating the severity of naltrexone-precipitated withdrawal. Wild-type littermates of the Gαo +/− mice were used as controls. Changes in μ receptor number and function were determined in midbrain and hindbrain homogenates using radioligand binding and μ agonist-stimulated [35S]GTPγS binding, respectively.

Results

Following either acute or chronic morphine treatment, all mice developed antinociceptive tolerance and physical dependence, regardless of genotype. With chronic morphine treatment, Gαo +/− mice developed tolerance faster and displayed more severe naltrexone-precipitated withdrawal in some behaviors than did wild-type littermates. Morphine tolerance was not associated with changes in μ receptor number or function in brain homogenates from either wild-type or Gαo +/− mice.

Conclusions

These data suggest that the guanine nucleotide binding protein Gαo offers some protection against the development of morphine tolerance and dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bagley EE, Chieng BC, Christie MJ, Connor M (2005a) Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. Br J Pharmacol 146:68–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagley EE, Gerke MB, Vaughan CW, Hack SP, Christie MJ (2005b) GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal. Neuron 45:433–445

    Article  CAS  PubMed  Google Scholar 

  • Bryant CD, Roberts KW, Byun JS, Fanselow MS, Evans CJ (2006) Morphine analgesic tolerance in 129P3/J and 129S6/SvEv mice. Pharmacol Biochem Behav 85:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buntin-Mushock C, Phillip L, Moriyama K, Palmer PP (2005) Age-dependent opioid escalation in chronic pain patients. Anesth Analg 100:1740–1745

    Article  PubMed  Google Scholar 

  • Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154:384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contet C, Filliol D, Matifas A, Kieffer BL (2008) Morphine-induced analgesic tolerance, locomotor sensitization and physical dependence do not require modification of mu opioid receptor, cdk5 and adenylate cyclase activity. Neuropharmacology 54:475–486

    Article  CAS  PubMed  Google Scholar 

  • Crain SM, Shen K (2000) Enhanced analgesic potency and reduced tolerance of morphine in 129/SvEv mice: evidence for a deficiency in GM1 ganglioside-regulated excitatory opioid receptor functions. Brain Res 856:227–235

    Article  CAS  PubMed  Google Scholar 

  • Divin MF, Ko MC, Traynor JR (2008) Comparison of the opioid receptor antagonist properties of naltrexone and 6 beta-naltrexol in morphine-naive and morphine-dependent mice. Eur J Pharmacol 583:48–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan SZ, Christe M, Milstone DS, Mortensen RM (2007) Go but not Gi2 or Gi3 is required for muscarinic regulation of heart rate and heart rate variability in mice. Biochem Biophys Res Commun 357:139–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eitan S, Bryant CD, Saliminejad N, Yang YC, Vojdani E, Keith D, Polakiewicz R, Evans CJ (2003) Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. J Neurosci 23:8360–8369

    Article  CAS  PubMed  Google Scholar 

  • Elliott J, Guo L, Traynor JR (1997) Tolerance to mu-opioid agonists in human neuroblastoma SH-SY5Y cells as determined by changes in guanosine-5′-O-(3-[35S]-thio)triphosphate binding. Br J Pharmacol 121:1422–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian G, Bozo B, Szikszay M, Horvath G, Coscia CJ, Szucs M (2002) Chronic morphine-induced changes in mu-opioid receptors and G proteins of different subcellular loci in rat brain. J Pharmacol Exp Ther 302:774–780

    Article  CAS  PubMed  Google Scholar 

  • Farrell M (1994) Opiate withdrawal. Addiction 89:1471–1475

    Article  CAS  PubMed  Google Scholar 

  • Fyfe LW, Cleary DR, Macey TA, Morgan MM, Ingram SL (2010) Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons. J Pharmacol Exp Ther 335:674–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  CAS  PubMed  Google Scholar 

  • Garzon J, Sanchez-Blazquez P (2001) Administration of myr(+)-G(i2)alpha subunits prevents acute tolerance (tachyphylaxis) to mu-opioid effects in mice. Neuropharmacology 40:560–569

    Article  CAS  PubMed  Google Scholar 

  • Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, Yanagisawa M, Nestler EJ, DiLeone RJ (2003) Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23:3106–3111

    Article  CAS  PubMed  Google Scholar 

  • Gintzler AR, Chakrabarti S (2006) Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules. Life Sci 79:717–722

    Article  CAS  PubMed  Google Scholar 

  • Hao S, Liu S, Zheng X, Zheng W, Ouyang H, Mata M, Fink DJ (2011) The role of TNFalpha in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats. Neuropsychopharmacology 36:664–676

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK (2015) Structural insights into μ-opioid receptor activation. Nature 524:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram SL, Macey TA, Fossum EN, Morgan MM (2008) Tolerance to repeated morphine administration is associated with increased potency of opioid agonists. Neuropsychopharmacology 33:2494–2504

    Article  CAS  PubMed  Google Scholar 

  • Kest B, Lee CE, McLemore GL, Inturrisi CE (1996) An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice. Brain Res Bull 39:185–188

    Article  CAS  PubMed  Google Scholar 

  • Kest B, Hopkins E, Palmese CA, Chen ZP, Mogil JS, Pintar JE (2001) Morphine tolerance and dependence in nociceptin/orphanin FQ transgenic knock-out mice. Neuroscience 104:217–222

    Article  CAS  PubMed  Google Scholar 

  • Kest B, Hopkins E, Palmese CA, Adler M, Mogil JS (2002a) Genetic variation in morphine analgesic tolerance: a survey of 11 inbred mouse strains. Pharmacol Biochem Behav 73:821–828

    Article  CAS  PubMed  Google Scholar 

  • Kest B, Palmese CA, Hopkins E, Adler M, Juni A, Mogil JS (2002b) Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience 115:463–469

    Article  CAS  PubMed  Google Scholar 

  • Kest B, Smith SB, Schorscher-Petcu A, Austin JS, Ritchie J, Klein G, Rossi GC, Fortin A, Mogil JS (2009) Gnao1 (G alphaO protein) is a likely genetic contributor to variation in physical dependence on opioids in mice. Neuroscience 162:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Kolesnikov Y, Jain S, Wilson R, Pasternak GW (1998) Lack of morphine and enkephalin tolerance in 129/SvEv mice: evidence for a NMDA receptor defect. J Pharmacol Exp Ther 284:455–459

    CAS  PubMed  Google Scholar 

  • Kosten TR, George TP (2002) The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect 1:13–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamberts JT, Jutkiewicz EM, Mortensen RM, Traynor JR (2011) Mu-opioid receptor coupling to galpha(o) plays an important role in opioid antinociception. Neuropsychopharmacology 36:2041–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamberts JT, Smith CE, Li MH, Ingram SL, Neubig RR, Traynor JR (2013) Differential control of opioid antinociception to thermal stimuli in a knock-in mouse expressing regulator of G-protein signling-insensitive Gαo protein. J Neurosci 33:4369–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  CAS  PubMed  Google Scholar 

  • Lester PA, Traynor JR (2006) Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes. Brain Res 1073-1074:290–296

    Article  CAS  PubMed  Google Scholar 

  • Levitt ES, Lauren C, Purington LC, Traynor JR (2011) Gi/o-coupled receptors compete for signaling to adenylyl cyclase in SH-SY5Y cells and reduce opioid-mediated cAMP overshoot. Mol Pharmacol 79:461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madia PA, Navani DM, Yoburn BC (2011) [(35)S]GTPgammaS binding and opioid tolerance and efficacy in mouse spinal cord. Pharmacol Biochem Behav 101:155–165

    Article  PubMed  Google Scholar 

  • Maher CE, Eisenach JC, Pan HL, Xiao R, Childers SR (2001) Chronic intrathecal morphine administration produces homologous mu receptor/G-protein desensitization specifically in spinal cord. Brain Res 895:1–8

    Article  CAS  PubMed  Google Scholar 

  • Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dollé P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823

    Article  CAS  PubMed  Google Scholar 

  • McNally GP, Akil H (2002) Role of corticotropin-releasing hormone in the amygdala and bed nucleus of the stria terminalis in the behavioral, pain modulatory, and endocrine consequences of opiate withdrawal. Neuroscience 112:605–617

    Article  CAS  PubMed  Google Scholar 

  • Morgan MM, Christie MJ (2011) Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. Br J Pharmacol 164:1322–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MM, Clayton CC, Lane DA (2003) Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance. Neuroscience 118:227–232

    Article  CAS  PubMed  Google Scholar 

  • Morgan MM, Clayton CC, Boyer-Quick JS (2005) Differential susceptibility of the PAG and RVM to tolerance to the antinociceptive effect of morphine in the rat. Pain 113:91–98

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Erdos JJ, Terwilliger R, Duman RS, Tallman JF (1989) Regulation of G proteins by chronic morphine in the rat locus coeruleus. Brain Res 476:230–239

    Article  CAS  PubMed  Google Scholar 

  • Nitsche JF, Schuller AG, King MA, Zengh M, Pasternak GW, Pintar JE (2002) Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci 22:10906–10913

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Blazquez P, Garzon J (1994) Antibodies directed against alpha subunits of Gi, Gx/z, GO and GS transducer proteins reduced the morphine withdrawal syndrome in mice. Life Sci 55:PL445–PL450

    Article  CAS  PubMed  Google Scholar 

  • Selley DE, Nestler EJ, Breivogel CS, Childers SR (1997) Opioid receptor-coupled G-proteins in rat locus coeruleus membranes: decrease in activity after chronic morphine treatment. Brain Res 746:10–18

    Article  CAS  PubMed  Google Scholar 

  • Sim LJ, Selley DE, Dworkin SI, Childers SR (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 16:2684–2692

    Article  CAS  PubMed  Google Scholar 

  • Sim-Selley LJ, Scoggins KL, Cassidy MP, Smith LA, Dewey WL, Smith FL, Selley DE (2007) Region-dependent attenuation of mu opioid receptor-mediated G-protein activation in mouse CNS as a function of morphine tolerance. Br J Pharmacol 151:1324–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PA, Selley DE, Sim-Selley LJ, Welch SP (2007) Low dose combination of morphine and delta9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors. Eur J Pharmacol 571:129–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens CW, Yaksh TL (1989) Potency of infused spinal antinociceptive agents is inversely related to magnitude of tolerance after continuous infusion. J Pharmacol Exp Ther 250:1–8

    CAS  PubMed  Google Scholar 

  • Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–110

    Article  CAS  PubMed  Google Scholar 

  • Traynor JR, Nahorski SR (1995) Modulation by mu-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol Pharmacol 47:848–854

    CAS  PubMed  Google Scholar 

  • Valeri P, Martinelli B, Pimpinella G, Severini C (1989) Effects of dapiprazole, clonidine and yohimbine on the development of dependence and withdrawal behaviour in mice. Drug Alcohol Depend 23:73–77

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Raehal KM, Lin ET, Lowery JJ, Kieffer BL, Bilsky EJ, Sadee W (2004) Basal signaling activity of mu opioid receptor in mouse brain: role in narcotic dependence. J Pharmacol Exp Ther 308:512–520

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Friedman E, Olmstead MC, Burns LH (2005) Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbg signaling. Neuroscience 135:247–261

    Article  CAS  PubMed  Google Scholar 

  • Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev 81:299–343

    Article  CAS  PubMed  Google Scholar 

  • Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ (2013) Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65:223–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaksh TL, Al-Rodhan NR, Jensen TS (1988) Sites of action of opiates in production of analgesia. Prog Brain Res 77:371–394

    Article  CAS  PubMed  Google Scholar 

  • Yoburn BC, Gomes BA, Rajashekara V, Patel C, Patel M (2003) Role of G(i)alpha2-protein in opioid tolerance and mu-opioid receptor downregulation in vivo. Synapse 47:109–116

    Article  CAS  PubMed  Google Scholar 

  • Yu E, Miotto K, Akerele E, Montgomery A, Elkashef A, Walsh R, Montoya I, Fischman MW, Collins J, McSherry F et al (2008) A phase 3 placebo-controlled, double-blind, multi-site trial of the alpha-2-adrenergic agonist, lofexidine, for opioid withdrawal. Drug Alcohol Depend 97:158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachariou V, Thome J, Parikh K, Picciotto MR (2000) Upregulation of galanin binding sites and GalR1 mRNA levels in the mouse locus coeruleus following chronic morphine treatments and precipitated morphine withdrawal. Neuropsychopharmacology 23:127–137

    Article  CAS  PubMed  Google Scholar 

  • Zachariou V, Brunzell DH, Hawes J, Stedman DR, Bartfai T, Steiner RA, Wynick D, Langel U, Picciotto MR (2003) The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal. Proc Natl Acad Sci U S A 100:9028–9033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by R01 DA035316. JTL was supported by a pre-doctoral fellowship from the PhRMA Foundation and by training grants DA007267 and GM007767. The authors wish to acknowledge Claire Meurice, Joe Guel, and Jasmine Schimmel for technical support and animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Traynor.

Ethics declarations

All protocols were approved by the University of Michigan Committee on the Use and Care of Animals and experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals as adopted by the National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Morphine tolerance and dependence occur 129S6 mice

• Gαo heterozygous null mice develop morphine tolerance more quickly than wild type

• Withdrawal from chronic morphine is more severe in Gαo heterozygous null mice

• Chronic morphine does not alter μ-opioid agonist activation of G proteins in brain membranes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamberts, J.T., Rosenthal, L.D., Jutkiewicz, E.M. et al. Role of the guanine nucleotide binding protein, Gαo, in the development of morphine tolerance and dependence. Psychopharmacology 235, 71–82 (2018). https://doi.org/10.1007/s00213-017-4742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4742-2

Keywords

Navigation