Skip to main content
Log in

Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Attention-deficit/hyperactivity disorder (ADHD) is thought to involve hypofunctional catecholamine systems in the striatum, nucleus accumbens, and prefrontal cortex (PFC); however, recent clinical evidence has implicated glutamate dysfunction in the pathophysiology of ADHD. Recent studies show that increased stimulation of dopamine D2 and D4 receptors causes inhibition of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, respectively. The spontaneously hypertensive rat (SHR) model of ADHD combined type (C) has been found to have a hypofunctional dopamine system in the ventral striatum, nucleus accumbens, and PFC compared to the control Wistar Kyoto (WKY) strain.

Objectives

Based on the current understanding of typical dopamine–glutamate interactions, we hypothesized that the SHR model of ADHD would have a hyperfunctional glutamate system terminating in the striatum, nucleus accumbens, and PFC.

Results

High-speed amperometric recordings combined with four-channel microelectrode arrays to directly measure glutamate dynamics showed increased evoked glutamate release in the PFC (cingulate and infralimbic cortices, p < 0.05) and also in the striatum (p < 0.05) of the SHR (ADHD-C) as compared to the WKY. Finally, glutamate uptake was discovered to be aberrant in the PFC, but not the striatum, of the SHR when compared to the control WKY strain.

Conclusions

These results suggest that the glutamatergic system in the PFC of the SHR model of ADHD is hyperfunctional and that targeting glutamate in the PFC could lead to the development of novel therapeutics for the treatment of ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adey WR (1951) An experimental study of the hippocampal connexions of the cingulate cortex in the rabbit. Brain: J Neurol 74(2):233–247

    Article  CAS  Google Scholar 

  • Adey WR, Meyer M (1952) An experimental study of hippocampal afferent pathways from prefrontal and cingulate areas in the monkey. J Anat 86(1):58–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andreollo NA, Santos EF, Araujo MR, Lopes LR (2012) Rat’s age versus human’s age: what is the relationship? Arq Bras Cir Dig 25(1):49–51

    Article  PubMed  Google Scholar 

  • Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41. doi:10.2165/00023210-200923000-00005

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF, Li BM (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57(11):1377–1384. doi:10.1016/j.biopsych.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27(31):8161–8165. doi:10.1523/JNEUROSCI.1554-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Shumsky JS, Andrzejewski ME, McGaughy JA, Spencer RC, Devilbiss DM, Waterhouse BD (2012) Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic alpha(1) - and alpha(2)-receptors. Biol Psychiatry 71(5):467–473. doi:10.1016/j.biopsych.2011.07.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brassett-Harknett A, Butler N (2007) Attention-deficit/hyperactivity disorder: an overview of the etiology and a review of the literature relating to the correlates and lifecourse outcomes for men and women. Clin Psychol Rev 27(2):188–210. doi:10.1016/j.cpr.2005.06.001

    Article  PubMed  Google Scholar 

  • Burmeister JJ, Gerhardt GA (2001) Self-referencing ceramic-based multisite microelectrodes for the detection and elimination of interferences from the measurement of L-glutamate and other analytes. Anal Chem 73(5):1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Cascade E, Kalali AH, Wigal SB (2010) Real-world data on: attention deficit hyperactivity disorder medication side effects. Psychiatry (Edgmont) 7(4):13–15

    Google Scholar 

  • Cass WA, Gerhardt GA (1995) In vivo assessment of dopamine uptake in rat medial prefrontal cortex: comparison with dorsal striatum and nucleus accumbens. J Neurochem 65(1):201–207

    Article  CAS  PubMed  Google Scholar 

  • Cass WA, Gerhardt GA, Mayfield RD, Curella P, Zahniser NR (1992) Differences in dopamine clearance and diffusion in rat striatum and nucleus accumbens following systemic cocaine administration. J Neurochem 59(1):259–266

    Article  CAS  PubMed  Google Scholar 

  • Cass WA, Zahniser NR, Flach KA, Gerhardt GA (1993) Clearance of exogenous dopamine in rat dorsal striatum and nucleus accumbens: role of metabolism and effects of locally applied uptake inhibitors. J Neurochem 61(6):2269–2278

    Article  CAS  PubMed  Google Scholar 

  • Charach A, Yeung E, Climans T, Lillie E (2011) Childhood attention-deficit/hyperactivity disorder and future substance use disorders: comparative meta-analyses. J Am Acad Child Adolesc Psychiatry 50(1):9–21. doi:10.1016/j.jaac.2010.09.019

    Article  PubMed  Google Scholar 

  • Cowles BJ (2009) Update on the management of attention-deficit/hyperactivity disorder in children and adults: patient considerations and the role of lisdexamfetamine. Ther Clin Risk Manag 5:943–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784. doi:10.1016/j.neubiorev.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  • Dramsdahl M, Ersland L, Plessen KJ, Haavik J, Hugdahl K, Specht K (2011) Adults with attention-deficit/hyperactivity disorder—a brain magnetic resonance spectroscopy study. Front Psychiatr 2:65. doi:10.3389/fpsyt.2011.00065

    Article  CAS  Google Scholar 

  • Dunnett SB, Lelos M (2010) Behavioral analysis of motor and non-motor symptoms in rodent models of Parkinson’s disease. Prog Brain Res 184:35–51. doi:10.1016/S0079-6123(10)84003-8

    Article  CAS  PubMed  Google Scholar 

  • Findling RL, McNamara NK, Stansbrey RJ, Maxhimer R, Periclou A, Mann A, Graham SM (2007) A pilot evaluation of the safety, tolerability, pharmacokinetics, and effectiveness of memantine in pediatric patients with attention-deficit/hyperactivity disorder combined type. J Child Adolesc Psychopharmacol 17(1):19–33. doi:10.1089/cap.2006.0044

    Article  PubMed  Google Scholar 

  • Friedemann MN, Gerhardt GA (1992) Regional effects of aging on dopaminergic function in the Fischer-344 rat. Neurobiol Aging 13(2):325–332. doi:10.1016/0197-4580(92)90046-Z

    Article  CAS  PubMed  Google Scholar 

  • Granziera C, Hadjikhani N, Arzy S, Seeck M, Meuli R, Krueger G (2011) In-vivo magnetic resonance imaging of the structural core of the Papez circuit in humans. Neuroreport 22(5):227–231. doi:10.1097/WNR.0b013e328344f75f

    Article  PubMed  Google Scholar 

  • Halperin JM, Schulz KP (2006) Revisiting the role of the prefrontal cortex in the pathophysiology of attention-deficit/hyperactivity disorder. Psychol Bull 132(4):560–581. doi:10.1037/0033-2909.132.4.560

    Article  PubMed  Google Scholar 

  • Hammerness P, Biederman J, Petty C, Henin A, Moore CM (2012) Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-deficit hyperactivity disorder: a controlled pilot study. CNS Neurosci Ther 18(1):34–40. doi:10.1111/j.1755-5949.2010.00226.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hascup ER, Hascup KN, Stephens M, Pomerleau F, Huettl P, Gratton A, Gerhardt GA (2010) Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem 115(6):1608–1620. doi:10.1111/j.1471-4159.2010.07066.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hebert MA, Larson GA, Zahniser NR, Gerhardt GA (1999) Age-related reductions in [3H]WIN 35,428 binding to the dopamine transporter in nigrostriatal and mesolimbic brain regions of the Fischer 344 rat. J Pharmacol Exp Ther 288(3):1334–1339

    CAS  PubMed  Google Scholar 

  • Hinzman JM, Thomas TC, Burmeister JJ, Quintero JE, Huettl P, Pomerleau F, Gerhardt GA, Lifshitz J (2010) Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 27(5):889–899. doi:10.1089/neu.2009.1238

    Article  PubMed Central  PubMed  Google Scholar 

  • Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J (2012) Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 29(6):1197–1208. doi:10.1089/neu.2011.2261

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoffman AF, Gerhardt GA (1998) In vivo electrochemical studies of dopamine clearance in the rat substantia nigra: effects of locally applied uptake inhibitors and unilateral 6-hydroxydopamine lesions. J Neurochem 70(1):179–189

    Article  CAS  PubMed  Google Scholar 

  • Johansen EB, Killeen PR, Russell VA, Tripp G, Wickens JR, Tannock R, Williams J, Sagvolden T (2009) Origins of altered reinforcement effects in ADHD. Behav Brain Funct 5:7. doi:10.1186/1744-9081-5-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Kahn JB, Ward RD, Kahn LW, Rudy NM, Kandel ER, Balsam PD, Simpson EH (2012) Medial prefrontal lesions in mice impair sustained attention but spare maintenance of information in working memory. Learn Mem 19(11):513–517. doi:10.1101/lm.026302.112

    Article  PubMed Central  PubMed  Google Scholar 

  • Klimkeit EI, Mattingley JB, Sheppard DM, Lee P, Bradshaw JL (2005) Motor preparation, motor execution, attention, and executive functions in attention deficit/hyperactivity disorder (ADHD). Child Neuropsychol 11(2):153–173. doi:10.1080/092970490911298

    Article  PubMed  Google Scholar 

  • Knardahl S, Sagvolden T (1979) Open-field behavior of spontaneously hypertensive rats. Behav Neural Biol 27(2):187–200

    Article  CAS  PubMed  Google Scholar 

  • Knardahl S, Sagvolden T (1981) Regarding hyperactivity of the SHR in the open-field test. Behav Neural Biol 32(2):274–275

    Article  CAS  PubMed  Google Scholar 

  • Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HH, MacDonald JF (2002) A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35(6):1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Krause KH, Dresel SH, Krause J, la Fougere C, Ackenheil M (2003) The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27(7):605–613

    Article  CAS  PubMed  Google Scholar 

  • Krusch DA, Klorman R, Brumaghim JT, Fitzpatrick PA, Borgstedt AD, Strauss J (1996) Methylphenidate slows reactions of children with attention deficit disorder during and after an error. J Abnorm Child Psychol 24(5):633–650

    Article  CAS  PubMed  Google Scholar 

  • Lehohla M, Kellaway L, Russell VA (2004) NMDA receptor function in the prefrontal cortex of a rat model for attention-deficit hyperactivity disorder. Metab Brain Dis 19(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Levy F (1991) The dopamine theory of attention deficit hyperactivity disorder (ADHD). Aust N Z J Psychiatry 25(2):277–283

    Article  CAS  PubMed  Google Scholar 

  • Mehta MA, Goodyer IM, Sahakian BJ (2004) Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry 45(2):293–305

    Article  PubMed  Google Scholar 

  • Miller EM, Pomerleau F, Huettl P, Russell VA, Gerhardt GA, Glaser PE (2012) The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens. Neuropharmacology 63(8):1327–1334. doi:10.1016/j.neuropharm.2012.08.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller EM, Thomas TC, Gerhardt GA, Glaser PEA (2013) Dopamine and glutamate interactions in ADHD: implications for the future neuropharmacology of ADHD. In: Banerjee S (ed) Attention deficit hyperactivity disorder in children and adolescents. doi:10.5772/54207

  • Molina BS, Hinshaw SP, Swanson JM, Arnold LE, Vitiello B, Jensen PS, Epstein JN, Hoza B, Hechtman L, Abikoff HB, Elliott GR, Greenhill LL, Newcorn JH, Wells KC, Wigal T, Gibbons RD, Hur K, Houck PR (2009) The MTA at 8 years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J Am Acad Child Adolesc Psychiatry 48(5):484–500. doi:10.1097/CHI.0b013e31819c23d0

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore CM, Biederman J, Wozniak J, Mick E, Aleardi M, Wardrop M, Dougherty M, Harpold T, Hammerness P, Randall E, Renshaw PF (2006) Differences in brain chemistry in children and adolescents with attention deficit hyperactivity disorder with and without comorbid bipolar disorder: a proton magnetic resonance spectroscopy study. Am J Psychiatry 163(2):316–318. doi:10.1176/appi.ajp.163.2.316

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore CM, Biederman J, Wozniak J, Mick E, Aleardi M, Wardrop M, Dougherty M, Harpold T, Hammerness P, Randall E, Lyoo IK, Renshaw PF (2007) Mania, glutamate/glutamine and risperidone in pediatric bipolar disorder: a proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Affect Disord 99(1–3):19–25. doi:10.1016/j.jad.2006.08.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam

    Google Scholar 

  • Perry JL, Joseph JE, Jiang Y, Zimmerman RS, Kelly TH, Darna M, Huettl P, Dwoskin LP, Bardo MT (2011) Prefrontal cortex and drug abuse vulnerability: translation to prevention and treatment interventions. Brain Res Rev 65(2):124–149. doi:10.1016/j.brainresrev.2010.09.001

    Article  PubMed Central  PubMed  Google Scholar 

  • Podet A, Lee MJ, Swann AC, Dafny N (2010) Nucleus accumbens lesions modulate the effects of methylphenidate. Brain Res Bull 82(5–6):293–301. doi:10.1016/j.brainresbull.2010.05.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948. doi:10.1176/appi.ajp.164.6.942

    Article  PubMed  Google Scholar 

  • Rastogi RB, Singhal RL (1976) Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain. J Pharmacol Exp Ther 198(3):609–618

    CAS  PubMed  Google Scholar 

  • Robbins TW, Sahakian BJ (1979) "Paradoxical" effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology. Neuropharmacology 18(12):931–950

    Article  CAS  PubMed  Google Scholar 

  • Russell VA (2000) The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev 24(1):133–136

    Article  CAS  PubMed  Google Scholar 

  • Russell VA (2001) Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis 16(3–4):143–149

    Article  CAS  PubMed  Google Scholar 

  • Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci Chapter 9:Unit9 35. doi:10.1002/0471142301.ns0935s54

  • Rutherford EC, Pomerleau F, Huettl P, Stromberg I, Gerhardt GA (2007) Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats. J Neurochem 102(3):712–722. doi:10.1111/j.1471-4159.2007.04596.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagvolden T, Johansen EB (2012) Rat models of ADHD. Curr Top Behav Neurosci 9:301–315. doi:10.1007/7854_2011_126

    Article  PubMed  Google Scholar 

  • Sagvolden T, Johansen EB, Aase H, Russell VA (2005) A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 28(3):397–419. doi:10.1017/S0140525X05000075, discussion 419-368

    Article  PubMed  Google Scholar 

  • Sagvolden T, Dasbanerjee T, Zhang-James Y, Middleton F, Faraone S (2008) Behavioral and genetic evidence for a novel animal model of attention-deficit/hyperactivity disorder predominantly inattentive subtype. Behav Brain Funct 4:56. doi:10.1186/1744-9081-4-56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagvolden T, Johansen EB, Woien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, Jensen V, Aase H, Russell VA, Killeen PR, Dasbanerjee T, Middleton FA, Faraone SV (2009) The spontaneously hypertensive rat model of ADHD—the importance of selecting the appropriate reference strain. Neuropharmacology 57(7–8):619–626. doi:10.1016/j.neuropharm.2009.08.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485. doi:10.1016/j.neuron.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  • Solanto MV, Arnsten AFT, Castellanos FX (2001) Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford University Press, New York

    Google Scholar 

  • Spencer TJ, Biederman J, Mick E (2007) Attention-deficit/hyperactivity disorder: diagnosis, lifespan, comorbidities, and neurobiology. J Pediatr Psychol 32(6):631–642. doi:10.1093/jpepsy/jsm005

    Article  PubMed  Google Scholar 

  • Surman CB, Hammerness PG, Petty C, Spencer T, Doyle R, Napolean S, Chu N, Yorks D, Biederman J (2012) A pilot open label prospective study of memantine monotherapy in adults with ADHD. World J Biol Psychiatry. doi:10.3109/15622975.2011.623716

    Google Scholar 

  • Thomas TC, Hinzman JM, Gerhardt GA, Lifshitz J (2012) Hypersensitive glutamate signaling correlates with the development of late-onset behavioral morbidity in diffuse brain-injured circuitry. J Neurotrauma 29(2):187–200. doi:10.1089/neu.2011.2091

    Article  PubMed Central  PubMed  Google Scholar 

  • Warton FL, Howells FM, Russell VA (2009) Increased glutamate-stimulated release of dopamine in substantia nigra of a rat model for attention-deficit/hyperactivity disorder—lack of effect of methylphenidate. Metab Brain Dis 24(4):599–613. doi:10.1007/s11011-009-9166-1

    Article  CAS  PubMed  Google Scholar 

  • Yuen EY, Zhong P, Yan Z (2010) Homeostatic regulation of glutamatergic transmission by dopamine D4 receptors. Proc Natl Acad Sci U S A 107(51):22308–22313. doi:10.1073/pnas.1010025108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alexander Saunders for his help with cryosectioning and staining the tissue. These experiments comply with the current laws of the USA.

This study was supported by USPHS grant 5T32AG000242-13 and DARPA N66001-09-C-2080. The project described was also supported by the National Center for Advancing Translational Sciences, UL1TR000117. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

The authors disclose that Greg A. Gerhardt is the owner of Quanteon Limited Liability Company (Nicholasville, KY). Quanteon developed the FAST system utilized for these studies. No financial support was provided on behalf of Quanteon. The authors, therefore, declare no competing financial interests. All authors have full control of the primary data and thus agree to allow the journal to review data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. A. Glaser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, E.M., Pomerleau, F., Huettl, P. et al. Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology 231, 3019–3029 (2014). https://doi.org/10.1007/s00213-014-3479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3479-4

Keywords

Navigation