Skip to main content

Advertisement

Log in

LY2033298, a positive allosteric modulator at muscarinic M4 receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Entrainment of circadian rhythms to the light–dark cycle is essential for restorative sleep, and abnormal sleep timing is implicated in central nervous system (CNS) disorders like depression, schizophrenia, and Alzheimer's disease. Many transmitters, including acetylcholine, that exerts its actions via muscarinic receptors modulate the suprachiasmatic nucleus, the master pacemaker.

Objectives

Since positive allosteric modulators of muscarinic M4 receptors are candidates for treatment of mood and cognitive deficits of CNS disorders, it is important to evaluate their circadian actions.

Materials and methods

The effects of intraperitoneally applied muscarinic agents on circadian wheel-running rhythms were measured employing hamsters, a model organism for studying activity rhythms.

Results

Systemic administration of the muscarinic receptor agonist oxotremorine (0.01–0.04 mg/kg) inhibited light-induced phase delays and advances of hamster circadian wheel-running rhythms. The M4 positive allosteric modulator, LY2033298 (10–40 mg/kg), had no effect on light-induced phase shifts when administered alone, yet significantly enhanced (at 20 mg/kg) the inhibitory influence of oxotremorine on light-induced phase delays. In addition, the muscarinic receptor antagonist, scopolamine, which was without effect on light-induced phase shifts when administered alone (0.001–0.1 mg/kg), antagonized (at 0.1 mg/kg) the inhibitory effect of oxotremorine and LY2033298 on light-induced phase delays.

Conclusions

These results are the first to demonstrate that systemically applied muscarinic receptor agonists modulate circadian activity rhythms, and they also reveal a specific role for M4 receptors. It will be of importance to evaluate circadian actions of psychotropic drugs acting via M4 receptors, since they may display beneficial properties under pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antoniadis EA, Ko CH, Ralph MR, McDonald RJ (2000) Circadian rhythms, aging and memory. Behav Brain Res 114:221–233

    Article  PubMed  CAS  Google Scholar 

  • Bina KG, Rusak B (1996) Muscarinic receptors mediate carbachol-induced phase shifts of circadian activity rhythms in Syrian hamsters. Brain Res 743:202–211

    Article  PubMed  CAS  Google Scholar 

  • Bina KG, Rusak B, Semba K (1993) Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J Comp Neurol 335:295–307

    Article  PubMed  CAS  Google Scholar 

  • Bina KG, Rusak B, Wilkinson M (1998) Daily variation of muscarinic receptors in visual cortex but not suprachiasmatic nucleus of Syrian hamsters. Brain Res 797:143–153

    Article  PubMed  CAS  Google Scholar 

  • Birks J, Harvey RJ (2006) Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev, January 25;(1):CD001190

  • Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ, Lindsley CW (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327:941–953

    Article  PubMed  CAS  Google Scholar 

  • Bridges TM, LeBois EP, Hopkins CR, Wood MR, Jones CK, Conn PJ, Lindsley CW (2010) The antipsychotic potential of muscarinic allosteric modulation. Drug News Perspect 23:229–240

    Article  PubMed  CAS  Google Scholar 

  • Brischoux F, Mainville L, Jones BE (2008) Muscarinic-2 and orexin-2 receptors on GABAergic and other neurons in the rat mesopontine tegmentum and their potential role in sleep-wake state control. J Comp Neurol 510:607–630

    Article  PubMed  Google Scholar 

  • Bromundt V, Koster M, Georgiev-Kill A, Opwis K, Wirz-Justice A, Stoppe G, Cajochen C (2011) Sleep-wake cycles and cognitive functioning in schizophrenia. Br J Psychiatry 198:269–276

    Article  PubMed  Google Scholar 

  • Buchanan GF, Gillette MU (2005) New light on an old paradox: site-dependent effects of carbachol on circadian rhythms. Exp Neurol 193:489–496

    Article  PubMed  CAS  Google Scholar 

  • Cain SW, Verwey M, Szybowska M, Ralph MR, Yeomans JS (2007) Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Res 1177:59–65

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJM, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:10978–10983

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Jones CK, Lindsley CW (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155

    Article  PubMed  CAS  Google Scholar 

  • Digby GJ, Shirley JK, Conn PJ (2010) Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders. Mol Biosyst 6:1345–1354

    Article  PubMed  CAS  Google Scholar 

  • Duncan WC (1996) Circadian rhythms and the pharmacology of affective illness. Pharmacol Ther 71:253–312

    Article  PubMed  CAS  Google Scholar 

  • Fisher SK, Figueiredo JC, Bartus RT (1984) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J Neuroschem 43:1171–1179

    Article  CAS  Google Scholar 

  • Francis PT, Ramírez MJ, Lai MK (2010) Neurochemical basis for symptomatic treatment of Alzheimer's disease. Neuropharmacology 59:221–229

    Article  PubMed  CAS  Google Scholar 

  • Gannon RL, Peglion J-L, Millan MJ (2009) Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram. Eur Neuropsychopharmacol 19:887–897

    Article  PubMed  CAS  Google Scholar 

  • Germain A, Kupfer DJ (2008) Circadian rhythm disturbances in depression. Hum Psychopharmacol Clin Exp 23:571–585

    Article  Google Scholar 

  • Gillette MA, Buchanan GF, Artinian L, Hamilton SE, Mathanson NM, Liu C (2001) Role of the M1 receptor in regulating circadian rhythms. Life Sci 68:2467–2472

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Roth BL (2007) The pipeline and future of drug development in schizophrenia. Mol Psychiatry 12:904–922

    Article  PubMed  CAS  Google Scholar 

  • Harper DG, Stopa EG, McKee AC, Satlin A, Harlan PC, Goldstein R et al (2001) Differential circadian rhythm disturbances in men with Alzheimer disease and frontotemporal degeneration. Arch Gen Psychiatry 58:353–360

    Article  PubMed  CAS  Google Scholar 

  • Hastings M, O’Neill JS, Maywood ES (2007) Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 195:187–198

    Article  PubMed  CAS  Google Scholar 

  • Hut RA, van der Zee EA (2011) The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 221:466–480

    Article  PubMed  CAS  Google Scholar 

  • Janik D, Mrosovsky N (1994) Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res 651:174–182

    Article  PubMed  CAS  Google Scholar 

  • Keefe DL, Earnest DJ, Nelson D, Takahashi JS, Turek FW (1987) A cholinergic antagonist, mecamylamine, blocks the phase-shifting effects of light on the circadian rhythm of locomotor activity in the golden hamster. Brain Res 403:308–312

    Article  PubMed  CAS  Google Scholar 

  • Ketchum JS, Sidell FR, Crowell EB, Aghajanian GK, Hayes AH (1973) Atropine, scopolamine, and ditran: comparative pharmacology and antagonists in man. Psychopharmacologia 28:121–145

    Article  PubMed  CAS  Google Scholar 

  • Kohsaka A, Bass J (2006) A sense of time: how molecular clocks organize metabolism. Trends Endocrin Metab 18:4–11

    Google Scholar 

  • Kriegsfeld LJ, Silver R (2006) The regulation of neuroendocrine function: timing is everything. Hormones Behav 49:557–574

    Article  CAS  Google Scholar 

  • Langmead CJ, Watson J, Reavill C (2008) Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117:232–243

    Article  PubMed  CAS  Google Scholar 

  • Leach K, Loiacono RE, Felder CC, McKinzie DL, Mogg A, Shaw DB, Sexton PM, Christopoulos A (2010) Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35:855–869

    Article  PubMed  CAS  Google Scholar 

  • Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373:31–41

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Gillette MU (1996) Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J Neurosci 16:744–751

    PubMed  CAS  Google Scholar 

  • Martin JL, Jeste DV, Ancoli-Israel S (2005) Older schizophrenia patients have more disrupted sleep and circadian rhythms than age-matched comparison subjects. J Psychiatr Res 39:251–259

    Article  PubMed  Google Scholar 

  • Meijer JH, van der Zee E, Dietz M (1988) The effects of intraventricular carbachol injections on the free-running activity rhythm of the hamster. J Biol Rhythms 3:333–348

    Article  PubMed  CAS  Google Scholar 

  • Monleon S, Urquiza A, Vinader-Caerols C, Parra A (2009) Effects of oxotremorine and physostigmine on the inhibitory avoidance impairments produced by amitriptyline in male and female mice. Behav Brain Res 205:367–371

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Allen CN (2006) The circadian visual system. Brain Res Rev 51:1–60

    Article  PubMed  CAS  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    PubMed  CAS  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  • Rezvani AH, Cauley M, Sexton H, Xiao Y, Brown ML, Paige MA, McDowell BE, Kellar KJ, Levin ED (2011) Sazetidine-A, a selective α4β2 nicotinic acetylcholine receptor ligand: effects on dizocilpine and scopolamine-induced attentional impairments in female Sprague–Dawley rats. Psychopharmacology (Berl) 215:621–630

    Article  CAS  Google Scholar 

  • Scarr E, Dean B (2008) Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia? J Neurochem 107:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Scibelli AC, Phillips TJ (2009) Combined scopolamine and ethanol treatment results in a locomotor stimulant response suggestive of synergism that is not blocked by dopamine receptor antagonists. Alcohol Clin Exp Res 33:435–447

    Article  PubMed  CAS  Google Scholar 

  • Shirey JK, Xiang Z, Orton D, Brady AE, Johnson KA, Williams R, Ayala JE, Rodriguez AL, Wess J, Weaver D, Niswender CM, Conn PJ (2008) An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4:42–50

    Article  PubMed  CAS  Google Scholar 

  • Srikumar BN, Raju TR, Shankaranarayana Rao BS (2006) The involvement of cholinergic and noradrenergic systems in behavioral recovery following oxotremorine treatment to chronically stressed rats. Neuroscience 143:679–688

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (2004) Acetylcholine systems and rhythmic activities during the waking-sleep cycle. Prog Brain Res 145:179–196

    Article  PubMed  CAS  Google Scholar 

  • Suratman S, Leach K, Sexton P, Felder C, Loiacono R, Christopoulos A (2011) Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. Br J Pharmacol 162:1659–1670

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Hong H-K, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implication for physiology and disease. Nat Rev Genet 9:764–775

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Hughes LF, Toth LA (2010) Sleep, activity, temperature and arousal responses of mice deficient for muscarinic receptor M2 or M4. Life Sci 86:158–169

    Article  PubMed  CAS  Google Scholar 

  • Ukai M, Kobayashi T, Kameyama T (1994) Characterization of the effects of scopolamine on the habituation of exploratory activity: differential effects of oxotremorine and physostigmine. Gen Pharmacol 25:433–438

    Article  PubMed  CAS  Google Scholar 

  • Valant C, Felder CC, Sexton PM, Christopoulos A (2012) Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol Pharmacol 8:41–52

    Article  Google Scholar 

  • Van der Zee EA, Streefland C, Strosberg AD, Schroder H, Luiten PGM (1991) Colocalization of muscarinic and nicotinic receptors in cholinoceptive neurons of the suprachiasmatic region in young and aged rats. Brain Res 542:348–352

    Article  PubMed  Google Scholar 

  • Van der Zee EA, Biemans BA, Gerkema MP, Daan S (2004) Habituation to a test apparatus during associative learning is sufficient to enhance muscarinic acetylcholine receptor-immunoreactivity in rat suprachiasmatic nucleus. J Neurosci Res 78:508–519

    Article  PubMed  Google Scholar 

  • Waters F, Sinclair C, Rock D, Jablensky A, Foster RG, Wulff K (2011) Daily variations in sleep-wake patterns and severity of psychopathology: a pilot study in community-dwelling individuals with chronic schizophrenia. Psychiatry Res 187:304–306

    Article  PubMed  Google Scholar 

  • Wee BEF, Anderson KD, Kouchis NS, Turek FW (1992) Administration of carbachol into the lateral ventricle and suprachiasmatic nucleus (SCN) produces dose-dependent phase shifts in the circadian rhythm of locomotor activity. Neurosci Lett 137:211–215

    Article  PubMed  CAS  Google Scholar 

  • Woolley ML, Carter HJ, Gartlon JE, Watson JM, Dawson LA (2009) Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol 603:147–149

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Wang YT, Cheng PC, Kuo YJ, Huang RC (2010) Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. J Neurophysiol 103:1397–1409

    Article  PubMed  CAS  Google Scholar 

  • Zatz M, Herkenham MA (1981) Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity. Brain Res 212:234–238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Gannon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gannon, R.L., Millan, M.J. LY2033298, a positive allosteric modulator at muscarinic M4 receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms. Psychopharmacology 224, 231–240 (2012). https://doi.org/10.1007/s00213-012-2743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2743-8

Keywords

Navigation