Skip to main content

Advertisement

Log in

Acoustic startle reduction in cocaine dependence persists for 1 year of abstinence

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic cocaine use results in long-lasting neurochemical changes that persist beyond the acute withdrawal period. Previous work from our group reported a profound reduction in the acoustic startle response (ASR) in chronic cocaine-dependent subjects in early abstinence compared to healthy controls that may be related to long-lasting neuroadaptations following withdrawal from chronic cocaine use.

Objectives

This study aims to investigate the persistence and time course of the decrements in the ASR of cocaine-dependent subjects during prolonged abstinence.

Methods

Seventy-six cocaine-dependent (COC) subjects and 30 controls (CONT) were tested, the former after a period of heavy cocaine dependence. COC subjects were retested sequentially for 1 year of abstinence or until relapse. ASR testing was conducted at 3-dB levels and the eye-blink component of the startle response was quantified with electromyographic recording of the orbicularis oculi muscle.

Results

While there was no difference in startle magnitude between CONT and COC in early abstinence, by day 40 of abstinence COC subjects exhibited a statistically significant decline (p = 0.0057) in ASR magnitude as compared with CONT and this decrement persisted for up to 1 year of abstinence (p = 0.0165). In addition, startle latency was slower in COC subjects as compared with CONT at all stages of abstinence.

Conclusions

These results replicate and expand upon the earlier finding that chronic cocaine use impairs the ASR in a manner that persists beyond the acute withdrawal period. This phenomenon may represent a biological measure of long-term neural changes accompanying cocaine dependence and subsequent withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anokhin AP, Heath AC, Myers E, Ralano A, Wood S (2003) Genetic influences on prepulse inhibition of startle reflex in humans. Neurosci Lett 353:45–48

    Article  PubMed  CAS  Google Scholar 

  • Astrachan DI, Davis M (1981) Spinal modulation of the acoustic startle response: the role of norepinephrine, serotonin and dopamine. Brain Res 206:223–228

    Article  PubMed  CAS  Google Scholar 

  • Astrachan DI, Davis M, Gallager DW (1983) Behavior and binding: correlations between alpha 1-adrenergic stimulation of acoustic startle and alpha 1-adrenoceptor occupancy and number in rat lumbar spinal cord. Brain Res 260(1):81–90

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal TD, Cuthbert BN, Filion DL, Hackley S, Lipp OV, van Boxtel A (2005) Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology 42:1–15

    Article  PubMed  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    PubMed  CAS  Google Scholar 

  • Commissaris RL, Davis M (1982) Opposite effects of N, N-dimethyltryptamine (DMT) and 5-methoxy-n, n-dimethyltryptamine (5-MeODMT) on acoustic startle: spinal vs brain sites of action. Neurosci Biobehav Rev 6:515–520

    Article  PubMed  CAS  Google Scholar 

  • Cunningham KA, Bradberry CW, Chang AS, Reith ME (1996) The role of serotonin in the actions of psychostimulants: molecular and pharmacological analyses. Behav Brain Res 73:93–102

    Article  PubMed  CAS  Google Scholar 

  • Dackis CA, Gold MS (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9:469–477

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1980) Neurochemical modulation of sensory–motor reactivity: acoustic and tactile startle reflexes. Neurosci Biobehav Rev 4:241–263

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1984) The mammalian startle response. In: Eaton R (ed) Neural mechanisms of startle behavior. Plenum Press, New York, pp 287–351

    Google Scholar 

  • Davis M (1997) The neurophysiological basis of acoustic startle modulation: research on fear motivation and sensory gating. In: Lang PJ, Simons RF, Balaban MT (eds) Attention and orienting: sensory and motivational processes. Lawrence Erlbaum Associates, London, pp 69–96

    Google Scholar 

  • Davis M, Astrachan DI, Gendelman PM, Gendelman DS (1980a) 5-Methoxy-N, N-dimethyltryptamine: spinal cord and brainstem mediation of excitatory effects on acoustic startle. Psychopharmacol Berl 70:123–130

    Article  CAS  Google Scholar 

  • Davis M, Strachan DI, Kass E (1980b) Excitatory and inhibitory effects of serotonin on sensorimotor reactivity measured with acoustic startle. Science 209:521–523

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Gendelman DS, Tischler MD, Gendelman PM (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2:791–805

    PubMed  CAS  Google Scholar 

  • Davis M, Cassella JV, Wrean WH, Kehne JH (1986) Serotonin receptor subtype agonists: differential effects on sensorimotor reactivity measured with acoustic startle. Psychopharmacol Bull 22:837–843

    PubMed  CAS  Google Scholar 

  • Della Casa V, Hofer I, Weiner I, Feldon J (1998) The effects of smoking on acoustic prepulse inhibition in healthy men and women. Psychopharmacol Berl 137:362–368

    Article  CAS  Google Scholar 

  • Duncan E, Madonick S, Chakravorty S, Parwani A, Szilagyi S, Efferen T, Gonzenbach S, Angrist B, Rotrosen J (2001) Effects of smoking on acoustic startle and prepulse inhibition in humans. Psychopharmacol Berl 156:266–272

    Article  CAS  Google Scholar 

  • Efferen TR, Duncan EJ, Szilagyi S, Chakravorty S, Adams JU, Gonzenbach S, Angrist B, Butler PD, Rotrosen J (2000) Diminished acoustic startle in chronic cocaine users. Neuropsychopharmacology 22:89–96

    Article  PubMed  CAS  Google Scholar 

  • Essman WD, Singh A, Lucki I (1994) Serotonergic properties of cocaine: effects on a 5-HT2 receptor-mediated behavior and on extracellular concentrations of serotonin and dopamine. Pharmacol Biochem Behav 49:107–113

    Article  PubMed  CAS  Google Scholar 

  • Fechter LD (1974) Central serotonin involvement in the elaboration of the startle reaction in rats. Pharmacol Biochem Behav 2:161–171

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Koch M, Schnitzler HU (1994) Amygdaloid noradrenaline is involved in the sensitization of the acoustic startle response in rats. Pharmacol Biochem Behav 48:307–314

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (1996) Structured Clinical Interview for DSM-IV Axis I Disorders—Patient Edition (SCID-I/P w/ Psychotic Screen, Version 2.0). Biometrics Research Department, New York State Psychiatric Institute, 722 West 168th Street, New York, NY 10032

  • Gawin FH, Ellinwood EH Jr (1988) Cocaine and other stimulants. Actions, abuse, and treatment. N Engl J Med 318(18):1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 43(2):107–113

    PubMed  CAS  Google Scholar 

  • Geyer MA, Warbritton JD, Menkes DB, Zook JA, Mandell AJ (1975) Opposite effects of intraventricular serotonin and bufotenin on rat startle responses. Pharmacol Biochem Behav 3:687–691

    Article  PubMed  CAS  Google Scholar 

  • Graham FK (1975) Presidential address, 1974. The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    Article  PubMed  CAS  Google Scholar 

  • Greenstein JE, Kassel JD (2010) The effects of smoking on selective attention as measured by startle reflex, skin conductance, and heart rate responses to auditory startle stimuli. Psychophysiology 47(1):15–24

    Article  PubMed  Google Scholar 

  • Harris AC, Gewirtz JC (2004) Elevated startle during withdrawal from acute morphine: a model of opiate withdrawal and anxiety. Psychopharmacol Berl 171(2):140–147

    Article  CAS  Google Scholar 

  • Hasenkamp W, Epstein MP, Green A, Wilcox L, Boshoven W, Lewison B, Duncan E (2010) Heritability of acoustic startle magnitude, prepulse inhibition, and startle latency in schizophrenia and control families. Psychiatry Res 178:236–243

    Article  PubMed  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HS, Searle JL (1968) Acoustic and temporal factors in the evocation of startle. J Acoust Soc Am 43:269–282

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Fischman MW (1989) The pharmacology of cocaine related to its abuse. Pharmacol Rev 41:3–52

    PubMed  CAS  Google Scholar 

  • Johansson C, Jackson DM, Zhang J, Svensson L (1995) Prepulse inhibition of acoustic startle, a measure of sensorimotor gating: effects of antipsychotics and other agents in rats. Pharmacol Biochem Behav 52:649–654

    Article  PubMed  CAS  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ (1987) Tolerance and dependence: implications for the pharmacological treatment of addiction. NIDA Res Monogr 76:53–62

    PubMed  CAS  Google Scholar 

  • Kreek MJ, Koob GF (1998) Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 51(1–2):23–47

    Article  PubMed  CAS  Google Scholar 

  • Krystal J, Webb E, Grillon C, Cooney N, Casal L, Morgan C 3rd, Southwick S, Davis M, Charney D (1997) Evidence of acoustic startle hyperreflexia in recently detoxified early onset male alcoholics: modulation by yohimbine and m-chlorophenylpiperazine (mCPP). Psychopharmacol Berl 131(3):207–215

    Article  CAS  Google Scholar 

  • Kuhar MJ, Pilotte NS (1996) Neurochemical changes in cocaine withdrawal. Trends Pharmacol Sci 17:260–264

    Article  PubMed  CAS  Google Scholar 

  • Landis C, Hunt W (1939) The startle pattern. Farrar and Rinehart, Farrar and Rinehart

  • Lee Y, Lopez DE, Meloni EG, Davis M (1996) A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci 16:3775–3789

    PubMed  CAS  Google Scholar 

  • Liang KC, Melia KR, Miserendino MJ, Falls WA, Campeau S, Davis M (1992) Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. J Neurosci 12(6):2303–2312

    PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacol Berl 94:507–514

    Article  CAS  Google Scholar 

  • Mello NK, Mendelson JH (1997) Cocaine’s effects on neuroendocrine systems: clinical and preclinical studies. Pharmacol Biochem Behav 57(3):571–599

    Article  PubMed  CAS  Google Scholar 

  • Meloni EG, Davis M (1999) Enhancement of the acoustic startle response in rats by the dopamine D1 receptor agonist SKF 82958. Psychopharmacol Berl 144:373–380

    Article  CAS  Google Scholar 

  • Meloni EG, Davis M (2000) Enhancement of the acoustic startle response by dopamine agonists after 6-hydroxydopamine lesions of the substantia nigra pars compacta: corresponding changes in c-Fos expression in the caudate-putamen. Brain Res 879:93–104

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Cone EJ, Kuhar MJ (1990) Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 46:635–645

    Article  PubMed  CAS  Google Scholar 

  • Stine SM, Grillon CG, Morgan CA 3rd, Kosten TR, Charney DS, Krystal JH (2001) Methadone patients exhibit increased startle and cortisol response after intravenous yohimbine. Psychopharmacol Berl 154(3):274–281

    Article  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Caine SB, Geyer MA (1993) Limbic cortico-striato-pallido-pontine substrates of sensorimotor gating in animal models and psychiatric disorders. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC Press, Boca Raton, pp 311–328

    Google Scholar 

  • Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10:318–325

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP, Dewey SL, Handlesman L (1992) Long-term frontal brain metabolic changes in cocaine abusers. Synapse 11:184–190

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ (1999) Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol 13:337–345

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from imaging studies. J Clin Invest 111:1444–1451

    PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Johnson KM (1992) Neurobiology of cocaine abuse. Trends Pharmacol Sci 13:193–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Michael Davis and Marina Wheeler for their helpful discussions and comments, and Karen Drexler for her assistance with subject recruitment. Infrastructure support from the Mental Health and the Research and Development Service Lines at the Atlanta VA Medical Center and the Department of Psychiatry and Behavioral Sciences at the Emory University School of Medicine is gratefully acknowledged.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Corcoran.

Additional information

Funding

This work was supported by National Institutes of Health/National Institute on Drug Abuse Grant 5RO1DA018294; E Duncan, S Corcoran is a postdoctoral fellow supported by National Institute on Drug Abuse Institutional Training Grant T32 DA15040.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corcoran, S., Norrholm, S.D., Cuthbert, B. et al. Acoustic startle reduction in cocaine dependence persists for 1 year of abstinence. Psychopharmacology 215, 93–103 (2011). https://doi.org/10.1007/s00213-010-2114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2114-2

Keywords

Navigation