Skip to main content

Advertisement

Log in

Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dyskinesia affects the majority of levodopa-treated parkinsonian patients within 5–10 years of treatment with levodopa. Clinical and preclinical observations suggest that an increase in serotoninergic transmission can contribute to the appearance of dyskinesias. It is thus conceivable that a modulation of synaptic dopamine (DA) levels induced by the inhibition of serotonin (5-HT) release, as a consequence of 5-HT1A agonists administration, might alleviate dyskinesias.

Objective

Since 5-HT1A receptors are expressed in the subthalamic nucleus (STN), the aim of the present study was to assess the effect of the intrasubthalamic administration of sarizotan, a compound with full 5-HT1A agonist properties, on levodopa-induced dyskinesias in the 6-hydroxydopamine (6-OHDA) model of parkinsonism.

Materials and methods

Male Sprague–Dawley rats received a unilateral 6-OHDA administration in the nigrostriatal pathway. A test of apomorphine was performed to evaluate dopamine depletion. One week later, a cannula was implanted in the STN. Animals were treated with levodopa (6 mg/kg, i.p., twice at day) for 22 consecutive days. On day 23, several doses (1 ng, 10 ng, or 1 μg) of sarizotan were administered through the cannula to the STN. The higher doses of sarizotan effectively attenuated all levodopa-induced dyskinesias including axial, limb, and orolingual subtypes.

Conclusions

These results suggest that the STN is a target structure for the antidyskinetic action of sarizotan and indicate that drug-mediated modulation of STN activity may be an alternative option for the treatment of levodopa-induced dyskinesias in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Frech F, Zamarbide I, Alegre M, Rodríguez-Oroz MC, Guridi J, Manrique M, Valencia M, Artieda J, Obeso JA (2006) Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 129:1748–1757

    Article  PubMed  CAS  Google Scholar 

  • Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394:99–124

    PubMed  CAS  Google Scholar 

  • Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro J (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58:193–199

    Article  PubMed  CAS  Google Scholar 

  • Arai R, Karasaw N, Geffard M, Nagatsu T, Nagatsu I (1994) Immunohistochemical evidence that central serotonin neurons produce dopamine from exogenous l-dopa in the rat, with reference to involvement of aromatic l-amino acid decarboxylase. Brain Res 667:295–299

    Article  PubMed  CAS  Google Scholar 

  • Arai R, Karasawa N, Nagatsu I (1996) Dopamine produced form l-Dopa is degraded by endogenous monoamine oxidase in neurons of the dorsal raphe nucleus of the rat: an immunohistochemical study. Brain Res 722:181–184

    Article  PubMed  CAS  Google Scholar 

  • Ba M, Kong M, Ma G, Yang H, Lu G, Chen S, Liu Z (2007) Cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Brain Res 1127:177–184

    Article  PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Bibbiani F, Morris MJ, Dimitriva T, Sherzai A, Mouradian MM, Chase TN (2005) Effects of serotonin 5-HT1A agonist in advanced Parkinson’s disease. Mov Disord 20:932–936

    Article  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Bartoszyk GD (2006) Mechanism of antidyskinetic action of sarizotan: a basal ganglia circuitry hypothesis. Mov Disord 21(Suppl 15):S572–573

    Google Scholar 

  • Bartoszyk GD, van Amsterdam C, Greiner HE, Rautenberg W, Russ H, Seyfried CA (2004) Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile. J Neural Transm 111:113–126

    Article  PubMed  CAS  Google Scholar 

  • Bartoszyk GD, Kuzhikandathil EV (2005) Receptor pharmacology of the antidyskinetic drug sarizotan. Parkinsonism Relat Disord 11(Suppl 2):241

    Google Scholar 

  • Bartoszyk GD, van den Buuse M, Gerlach M, Riederer P (2006) Mechanism of the antidyskinetic efficacy of sarizotan in hemiparkinsonian rats. Mov Disord 21(Suppl 15):S495

    Google Scholar 

  • Bedard PJ, Gregoire L, Samadi P, Bartoszyk GD, Di Paolo T (2006) Sarizotan reduces dyskinesia and maintains antiparkinsonian efficacy of levodopa in MPTP monkeys. Soc Neurosci Abstract no. 175.10

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    PubMed  CAS  Google Scholar 

  • Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nature Rev Neurosci 2:577–588

    Article  CAS  Google Scholar 

  • Bibbiani F, Oh JD, Chase TN (2001) Sarizotan 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834

    PubMed  CAS  Google Scholar 

  • Bishop C, Taylor JL, Kuhn DM, Eskow KL, Park JY, Walker PD (2006) MDMA and fenfluramine reduce l-dopa-induced dyskinesia via indirect 5-HT1A receptor stimulation. Eur J Neurosci 23:2669–2676

    Article  PubMed  Google Scholar 

  • Blier P, Pneyro G, El Mansari M, Bergeron R, De Montigny C (1998) Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann NY Acad Sci 861:204–216

    Article  PubMed  CAS  Google Scholar 

  • Bobillier P, Seguin S, Petijean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    Article  PubMed  CAS  Google Scholar 

  • Breit S, Lessmann L, Unterbrink D, Popa RC, Gasser T, Schulz JB (2006) Lesion of the pedunculopontine nucleus reverses hyperactivity of the subthalamic nucleus and substantia nigra pars reticulata in a 6-hydroxydopamine rat model. Eur J Neurosci 24:2275–2282

    Article  PubMed  CAS  Google Scholar 

  • Carlsson T, Carta M, Winkler C, Björklund A, Kirik D (2007) Serotonin neuron transplants exacerbate-dopa-induced dyskinesias in a rat model of Parkinson’s disease. Neurobiol Dis 27:8011–8022

    CAS  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Björklund A (2007) Dopamine released from 5-HT terminals is the cause of l-dopa-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833

    Article  PubMed  Google Scholar 

  • Cenci MA, Lee CS, Bjöklund A (1998) l-Dopa-induced dyskinesia in the rat is associated with striatal overexpression of prodynophin-and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Cragg SJ, Baufreton J, Xue Y, Bolam JP, Bevan MD (2004) Restricted, synaptic release of dopamine in the subthalamic nucleus of the rat. Synaptic release of dopamine in the subthalamic nucleus. Eur J Neurosci 20:1788–1802

    Article  PubMed  Google Scholar 

  • Davies MF, Deisz RA, Prince DA, Peroutka SJ (1987) Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res 423:347–352

    Article  PubMed  CAS  Google Scholar 

  • Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of l-dopa-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 179:76–89

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    PubMed  CAS  Google Scholar 

  • Dupre KB, Eskow KL, Negron G, Bishop C (2007) The differential effects of 5-HT1A receptor-stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res 1158:135–143

    Article  PubMed  CAS  Google Scholar 

  • Dupre KB, Eskow KL, Steiniger A, Kiloueva A, Negron GE, Lormand L, Park JY, Bishop C (2008) Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on l-dopa-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology 199:99–108

    Article  PubMed  CAS  Google Scholar 

  • Eskow KL, Gupta V, Alam S, Park JY, Bishop C (2007) The partial 5-HT1A agonist buspirone reduces the expression and development of l-dopa-induced dyskinesia in rats and improves L-dopa efficacy. Pharmacol Biochem Behav 87:306–314

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Bartoszyk GD, van den Buuse M, Schwarz J, Riederer P (2006a) Antidyskinetic efficacy of sarizotan. Mov Disord 21(Suppl. 13):S71–72

    Google Scholar 

  • Gerlach M, van den Buuse M, Bartoszyk G, Riederer P (2006b) Mechanism of the antidyskinetic efficacy of sarizotan in hemiparkinsonian rats. Int J Neuropsychopharmacol 9(Suppl 1):S121

    Google Scholar 

  • Gobert A, Lejeune F, Rivet JM, Audinot V, Newman-Tancredi A, Millan MJ (1995) Modulation of the activity of central serotoninergic neurons by novel serotonin 1A receptor agonists and antagonists: a comparison to adrenergic and dopaminergic neurons in rats. J Pharmacol Exp Ther 273:1032–1046

    PubMed  CAS  Google Scholar 

  • Goetz XG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001–2004. Mov Disord 20:523–539

    Article  PubMed  Google Scholar 

  • Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20

    Article  PubMed  Google Scholar 

  • Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749:88–94

    Article  PubMed  CAS  Google Scholar 

  • Hernández A, Ibáñez-Sandoval O, Sierra A, Valdiosera R, Tapia D, Anaya V, Galarraga E, Bargas J, Aceves J (2006) Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. J Neurophysiol 96:2877–2888

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1975) Monoamines and parkinsonism. Natl Inst Drug Abuse Res Monogr Ser 3:13–21

    PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J (2005) Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord 20(Suppl 11):S11–S16

    Article  PubMed  Google Scholar 

  • Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT1A, but not 5-HT1B receptors attenuates an increase in extracellular dopamine derived from exogenously administered l-dopa in the striatum with nigrostriatal denervation. J Neurochem 76:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131

    PubMed  Google Scholar 

  • Kreiss DS, Lucki I (1994) Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther 269:1268–1279

    PubMed  CAS  Google Scholar 

  • Krösser S, Neugebauer R, Chassard D, Kovar A (2007) Investigation of the impact of sarizotan on the pharmacokinetics of levodopa. Biopharm Drug Dispos 28:339–347

    Article  PubMed  CAS  Google Scholar 

  • Kuzhikandathil EV, Bartoszyk GD (2006) The novel antidyskinetic drug sarizotan elicits different functional responses at human D2-like dopamine receptors. Neuropharmacology 51:873–884

    Article  PubMed  CAS  Google Scholar 

  • Lanciego JL, Gonzalo N, Castle M, Sanchez-Escobar C, Aymerich MS, Obeso JA (2004) Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. Eur J Neurosci 19:1267–1277

    Article  PubMed  Google Scholar 

  • Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299:1–16

    Article  PubMed  CAS  Google Scholar 

  • Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchinson WD, Lozano AM (2001) Effects of apomorphine on subthalamic nucleus and globus pallidus pars interna in patients with Parkinson’s disease. J Neurophysiol 86:249–260

    PubMed  CAS  Google Scholar 

  • Liu J, Chu YX, Zhang QJ, Wang S, Feng J, Li Q (2007) 5.7-Dihydroxytryptamine lesion of the dorsal raphe nucleus alters neuronal activity of the subthalamic nucleus in normal and 6-hydroxydopamine-lesioned rats. Brain Res 1149:216–222

    Article  PubMed  CAS  Google Scholar 

  • Lunblad M, Usiello A, Carta M, Hakansson K, Fisone G, Cenci MA (2005) Pharmacological validation of a mouse model of l-dopa-induced dyskinesia. Exp Neurol 194:66–75

    Article  CAS  Google Scholar 

  • Maeda T, Nagata K, Yoshida Y, Kannari K (2005) Serotoninergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-dopa. Brain Res 1046:230–233

    Article  PubMed  CAS  Google Scholar 

  • Marin C, Aguilar E, Obeso JA (2006) Coadministration of entacapone with levodopa attenuates the severity of dyskinesias in hemiparkinsnian rats. Mov Dis 21:646–653

    Article  Google Scholar 

  • Matsumara M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67:1615–1632

    Google Scholar 

  • Mori S, Takino T, Yamada H, Sano Y (1985) Imunohistochemical demonstration of serotonin nerve fibers in the subthalamic nucleus of the rat, cat and monkey. Neurosci Lett 62:305–309

    Article  PubMed  CAS  Google Scholar 

  • Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa J, Ikeuchi Y, Hasegawa N (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300

    PubMed  CAS  Google Scholar 

  • Ng KY, Chase TN, Colburn RW, Kopin IJ (1970) l-Dopa-induced release of cerebral monoamines. Science 170:76–77

    Article  PubMed  CAS  Google Scholar 

  • Ng KY, Colburn RW, Kopin IJ (1971) Effects of L-dopa on efflux of cerebral monamines from synaptosomes. Nature 230:331–332

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Olanow CW, Nutt JG (2000) Levodopa motor complications in Parkinson’s disease. Trends Neurosci 23(10 Suppl):S2–S7

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Damier P, Goetz CG et al (2004) Multicenter, open-label, trial of sarizotan in Parkinson’s disease patients with levodopa-induced dyskinesias (the SPLENDID Study). Clin Neuropharmacol 27:58–62

    Article  PubMed  CAS  Google Scholar 

  • Papa SM, Engber TM, Kask AM, Chase TN (1994) Motor fluctuations in levodopa-treated parkinsonian rats: relation to lesion extent and treatment duration. Brain Res 662:69–74

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2c receptors. Mol Brain Res 23:163–178

    Article  PubMed  CAS  Google Scholar 

  • Rabiner EA, Gunn RN, Wilkins R, Sedman E, Grasby PM (2002) Evaluation of EMD 128130 occupancy of the 5-HT1A and the D2 receptor: a human PET study with [11C]WAY-100635 and [11C]raclopride. J Psychopharmacol 16:195–199

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Brooks DJ, Korczyn AD et al (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 342:1484–1491

    Article  PubMed  CAS  Google Scholar 

  • Santiago M, Matarredona ER, Machado A, Cano J (1998) Influence of serotoninergic drugs on in vivo dopamine extracellular output in rat striatum. J Neurosci Re 52:591–598

    Article  CAS  Google Scholar 

  • Schrag A, Quinn N (2000) Dyskinesias and motor fluctuations in Parkinson’s disease: a community-based study. Brain 123:2297–2305

    Article  PubMed  Google Scholar 

  • Standford IM, Kantaria MA, Chahal KC, Loucif CL (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT2C, 5-HT4 and 5-HT1A receptors. Neuropharmacology 49:1228–1234

    Article  CAS  Google Scholar 

  • Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotoninergic neurons in L-Dopa-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634

    PubMed  CAS  Google Scholar 

  • Vitek JL, Giroux M (2000) Physiology of hypokinetic and hyperkinetic movement disorders: model for dyskinesia. Ann Neurol 47:S131–S140

    PubMed  CAS  Google Scholar 

  • Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    Article  Google Scholar 

  • Wichmann T, DeLong MR (2003) Pathophysiology of Parkinson’s disease: the MPTP primate model of the huma disorder. Ann NY Acad Sci 991:199–213

    Article  PubMed  CAS  Google Scholar 

  • Winkler Ch, Kirik D, Björklund A Cenci A (2002) l-Dopa-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186

    Article  PubMed  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin 1 A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Kitai ST (2005) Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 93:1145–1157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an unrestricted grant from Merck KGaA (Darmstadt, Germany). Esther Aguilar is partially financed by the program: Ayudas para Contratos de Apoyo a la Investigación en el Sistema Nacional de Salud from the Ministerio de Sanidad y Consumo of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, C., Aguilar, E., Rodríguez-Oroz, M.C. et al. Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Psychopharmacology 204, 241–250 (2009). https://doi.org/10.1007/s00213-008-1452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1452-9

Keywords

Navigation