Skip to main content

Advertisement

Log in

Loss of [3H]4-DAMP binding to muscarinic receptors in the orbitofrontal cortex of Alzheimer’s disease patients with psychosis

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Neuropsychiatric behaviours in Alzheimer’s disease (AD) patients have been associated with neocortical alterations of presynaptic cholinergic and muscarinic M2 receptor markers. In contrast, it is unclear whether non-M2 muscarinic receptors have a role to play in AD behavioural symptoms.

Objectives

To correlate the alterations of neocortical postsynaptic muscarinic receptors with clinical features of AD.

Materials and methods

[3H]4-DAMP were used in binding assays with lysates of Chinese hamster ovary (CHO) cells stably transfected with M1–M5 receptors. [3H]4-DAMP was further used to measure muscarinic receptors in the postmortem orbitofrontal cortex of aged controls and AD patients longitudinally assessed for cognitive decline and behavioural symptoms.

Results

[3H]4-DAMP binds to human postmortem brain homogenates and M1-, M3-, M4- and M5-transfected CHO lysates with subnanomolar affinity. Compared to the controls, the [3H]4-DAMP binding density is reduced only in AD patients with significant psychotic symptoms. The association between reduced [3H]4-DAMP binding and psychosis is independent of the effects of dementia severity or neurofibrillary tangle burden.

Conclusions

This study suggests that the loss of non-M2 muscarinic receptors in the orbitofrontal cortex may be a neurochemical substrate of psychosis in AD and provides a rationale for further development of muscarinic receptor ligands in AD pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen MB, Fink-Jensen A, Peacock L, Gerlach J, Bymaster F, Lundbaek JA, Werge T (2003) The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28:1168–1175

    PubMed  CAS  Google Scholar 

  • Aubert I, Ar aujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  PubMed  CAS  Google Scholar 

  • Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 21:285–300

    Article  PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    PubMed  CAS  Google Scholar 

  • Callahan MJ, Kinsora JJ, Harbaugh RE, Reeder TM, Davis RE (1993) Continuous ICV infusion of scopolamine impairs sustained attention of rhesus monkeys. Neurobiol Aging 14:147–151

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MD (1993) Muscarinic receptors—characterization, coupling and function. Pharmacol Ther 58:319–379

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL, Back C (1998) The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am J Geriatr Psychiatry 6:S64–S78

    PubMed  CAS  Google Scholar 

  • Cummings JL, Kaufer D (1996) Neuropsychiatric aspects of Alzheimer’s disease: the cholinergic hypothesis revisited. Neurology 47:876–883

    PubMed  CAS  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  PubMed  CAS  Google Scholar 

  • Donaldson C, Tarrier N, Burns A (1998) Determinants of carer stress in Alzheimer’s disease. Int J Geriatr Psychiatry 13:248–256

    Article  PubMed  CAS  Google Scholar 

  • Eberlein WG, Engel W, Mihm G, Rudolf K, Wetzel B, Entzeroth M, Mayer N, Doods HN (1989) Structure-activity relationships and pharmacological profile of selective tricyclic antimuscarinics. Trends Pharmacol Sci Suppl:50–54

  • Ehlert FJ, Roeske WR, Yamamura HI (2000) Molecular biology, pharmacology, and brain distribution of subtypes of the muscarinic receptor. Psychopharmacology—the fourth generation of progress. American College of Neuropsychopharmacology, USA

    Google Scholar 

  • Farber NB, Rubin EH, Newcomer JW, Kinscherf DA, Miller JP, Morris JC, Olney JW, McKeel DW Jr (2000) Increased neocortical neurofibrillary tangle density in subjects with Alzheimer disease and psychosis. Arch Gen Psychiatry 57:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Porter AC, Skillman TL, Zhang L, Bymaster FP, Nathanson NM, Hamilton SE, Gomeza J, Wess J, McKinzie DL (2001) Elucidating the role of muscarinic receptors in psychosis. Life Sci 68:2605–2613

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci 14:220–223

    Article  PubMed  CAS  Google Scholar 

  • Fisher A, Michaelson DA, Brandeis R, Haring R, Chapman S, Pittel Z (2000) M1 muscarinic agonists as potential disease-modifying agents in Alzheimer’s disease. Rationale and perspectives. Ann NY Acad Sci 920:315–320

    PubMed  CAS  Google Scholar 

  • Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI (1995) Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem 64:1888–1891

    Article  PubMed  CAS  Google Scholar 

  • Flynn DD, Weinstein DA, Mash DC (1991) Loss of high-affinity agonist binding to M1 muscarinic receptors in Alzheimer’s disease: implications for the failure of cholinergic replacement therapies. Ann Neurol 29:256–262

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    PubMed  CAS  Google Scholar 

  • Gilley DW, Bienias JL, Wilson RS, Bennett DA, Beck TL, Evans DA (2004) Influence of behavioral symptoms on rates of institutionalization for persons with Alzheimer’s disease. Psychol Med 34:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Wester P, Winblad B, Gezelius C, Bring G, Eriksson A (1985) The patients dying after long terminal phase have acidotic brains; implications for biochemical measurements on autopsy tissue. J Neural Transm 61:253–264

    Article  PubMed  CAS  Google Scholar 

  • Hope T, Fairburn CG (1992) The Present Behavioural Examination (PBE): the development of an interview to measure current behavioural abnormalities. Psychol Med 22:223–230

    PubMed  CAS  Google Scholar 

  • Hope T, Keene J, Fairburn C, McShane R, Jacoby R (1997a) Behaviour changes in dementia. 2: Are there behavioural syndromes? Int J Geriatr Psychiatry 12:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Hope T, Keene J, Gedling K, Cooper S, Fairburn C, Jacoby R (1997b) Behaviour changes in dementia. 1: Point of entry data of a prospective study. Int J Geriatr Psychiatry 12:1062–1073

    Article  PubMed  CAS  Google Scholar 

  • Hope T, Keene J, Fairburn CG, Jacoby R, McShane R (1999) Natural history of behavioural changes and psychiatric symptoms in Alzheimer’s disease. A longitudinal study. Br J Psychiatry 174:39–44

    PubMed  CAS  Google Scholar 

  • IPA (1996) Behavioral and psychological signs and symptoms of dementia: implications for research and treatment. Proceedings of an international consensus conference. Lansdowne, Virginia, April 1996. Int Psychogeriatr 8(Suppl 3):215–552

    Google Scholar 

  • Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci 51:955–971

    Article  PubMed  CAS  Google Scholar 

  • Koch HJ, Haas S, Jurgens T (2005) On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer’s disease. Curr Med Chem 12:2915–2921

    Article  PubMed  CAS  Google Scholar 

  • Ladner CJ, Celesia GG, Magnuson DJ, Lee JM (1995) Regional alterations in M1 muscarinic receptor-G protein coupling in Alzheimer’s disease. J Neuropathol Exp Neurol 54:783–789

    Article  PubMed  CAS  Google Scholar 

  • Lai MK, Lai OF, Keene J, Esiri MM, Francis PT, Hope T, Chen CP (2001) Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 57:805–811

    PubMed  CAS  Google Scholar 

  • Lai MK, Tsang SW, Francis PT, Keene J, Hope T, Esiri MM, Spence I, Chen CP (2002) Postmortem serotoninergic correlates of cognitive decline in Alzheimer’s disease. NeuroReport 13:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Lai MK, Tsang SW, Francis PT, Esiri MM, Keene J, Hope T, Chen CP (2003) Reduced serotonin 5-HT1A receptor binding in the temporal cortex correlates with aggressive behavior in Alzheimer disease. Brain Res 974:82–87

    Article  PubMed  CAS  Google Scholar 

  • Levey AI (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci U S A 93:13541–13546

    Article  PubMed  CAS  Google Scholar 

  • Marshall GA, Fairbanks LA, Tekin S, Vinters HV, Cummings JL (2006) Neuropathologic correlates of apathy in Alzheimer’s disease. Dement Geriatr Cogn Disord 21:144–147

    Article  PubMed  Google Scholar 

  • Mash DC, Flynn DD, Potter LT (1985) Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Stefanich E, Whiting RL (1989) Direct labeling of rat M3-muscarinic receptors by [3H]4-DAMP. Eur J Pharmacol 166:459–466

    Article  PubMed  CAS  Google Scholar 

  • Minger SL, Esiri MM, McDonald B, Keene J, Carter J, Hope T, Francis PT (2000) Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 55:1460–1467

    PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  • Ogawa N, Mizukawa K, Asanuma M, Kanazawa I (1993) Abnormalities in muscarinic cholinergic receptors and their G-protein coupling systems in the cerebral frontal cortex in Alzheimer’s disease. Arch Gerontol Geriatr 17:77–89

    Article  PubMed  CAS  Google Scholar 

  • Pedder EK, Eveleigh P, Poyner D, Hulme EC, Birdsall NJ (1991) Modulation of the structure-binding relationships of antagonists for muscarinic acetylcholine receptor subtypes. Br J Pharmacol 103:1561–1567

    PubMed  CAS  Google Scholar 

  • Tekin S, Mega MS, Masterman DM, Chow T, Garakian J, Vinters HV, Cummings JL (2001) Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease. Ann Neurol 49:355–361

    Article  PubMed  CAS  Google Scholar 

  • Tsang SW, Lai MK, Kirvell S, Francis PT, Esiri MM, Hope T, Chen CP, Wong PT (2006) Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer’s disease. Neurobiol Aging 27:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Tsang SW, Pomakian J, Marshall GA, Vinters HV, Cummings JL, Chen CP, Wong PT, Lai MK (2007) Disrupted muscarinic M1 receptor signaling correlates with loss of protein kinase C activity and glutamatergic deficit in Alzheimer’s disease. Neurobiol Aging 28:1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Van Hoesen GW, Parvizi J, Chu CC (2000) Orbitofrontal cortex pathology in Alzheimer’s disease. Cereb Cortex 10:243–251

    Article  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 43:149–157

    PubMed  CAS  Google Scholar 

  • Zavitsanou K, Katsifis A, Mattner F, Huang XF (2004) Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Singhealth Research Foundation (SRF/110/05) and the Singapore National Medical Research Council (NMRC/0932/2005). The authors acknowledge Dr. J. Keene and Prof. T. Hope for the help in obtaining the clinical data, and M.K.P. Lai would like to thank H.H. Ching for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. P. Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, S.W.Y., Francis, P.T., Esiri, M.M. et al. Loss of [3H]4-DAMP binding to muscarinic receptors in the orbitofrontal cortex of Alzheimer’s disease patients with psychosis. Psychopharmacology 198, 251–259 (2008). https://doi.org/10.1007/s00213-008-1124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1124-9

Keywords

Navigation