Skip to main content
Log in

Pharmacological profile of ipragliflozin (ASP1941), a novel selective SGLT2 inhibitor, in vitro and in vivo

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The pharmacological profile of ipragliflozin (ASP1941; (1S)-1,5-anhydro-1-C-{3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl}-d-glucitol compound with l-proline (1:1)), a novel SGLT2 selective inhibitor, was investigated. In vitro, the potency of ipragliflozin to inhibit SGLT2 and SGLT1 and stability were assessed. In vivo, the pharmacokinetic and pharmacologic profiles of ipragliflozin were investigated in normal mice, streptozotocin-induced type 1 diabetic rats, and KK-Ay type 2 diabetic mice. Ipragliflozin potently and selectively inhibited human, rat, and mouse SGLT2 at nanomolar ranges and exhibited stability against intestinal glucosidases. Ipragliflozin showed good pharmacokinetic properties following oral dosing, and dose-dependently increased urinary glucose excretion, which lasted for over 12 h in normal mice. Single administration of ipragliflozin resulted in dose-dependent and sustained antihyperglycemic effects in both diabetic models. In addition, once-daily ipragliflozin treatment over 4 weeks improved hyperglycemia with a concomitant increase in urinary glucose excretion in both diabetic models. In contrast, ipragliflozin at pharmacological doses did not affect normoglycemia, as was the case with glibenclamide, and did not influence intestinal glucose absorption and electrolyte balance. These results suggest that ipragliflozin is an orally active SGLT2 selective inhibitor that induces sustained increases in urinary glucose excretion by inhibiting renal glucose reabsorption, with subsequent antihyperglycemic effect and a low risk of hypoglycemia. Ipragliflozin has, therefore, the therapeutic potential to treat hyperglycemia in diabetes by increasing glucose excretion into urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Ghani MA, DeFronzo RA (2008) Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract 14:782–790

    PubMed  Google Scholar 

  • Andrews WJ, Vasquez B, Nagulesparan M, Klimes I, Foley J, Unger R, Reaven GM (1984) Insulin therapy in obese, non-insulin-dependent diabetes induces improvements in insulin action and secretion that are maintained for two weeks after insulin withdrawal. Diabetes 33:634–642

    Article  PubMed  CAS  Google Scholar 

  • Baron AD (1998) Postprandial hyperglycaemia and alpha-glucosidase inhibitors. Diabetes Res Clin Pract 40(Suppl):S51–S55

    Article  PubMed  CAS  Google Scholar 

  • Crofford OB (1995) Diabetes control and complications. Annu Rev Med 46:267–279

    Article  PubMed  CAS  Google Scholar 

  • Donath MY, Gross DJ, Cerasi E, Kaiser N (1999) Hyperglycemia-induced β-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48:738–744

    Article  PubMed  CAS  Google Scholar 

  • Dörner KM (1977) Quantitative determination of lactose, maltose, and sucrose in urine. Eur J Pediatr 126:45–52

    Article  PubMed  Google Scholar 

  • Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38

    Article  PubMed  CAS  Google Scholar 

  • Francis J, Zhang J, Farhi A, Carey H, Geller DS (2004) A novel SGLT2 mutation in a patient with autosomal recessive renal glucosuria. Nephrol Dial Transplant 19:2893–2895

    Article  PubMed  CAS  Google Scholar 

  • Han S, Hagan DL, Taylor JR, Xin L, Meng W, Biller SA, Wetterau JR, Washburn WN, Whaley JM (2008) Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57:1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Harmon JS, Gleason CE, Tanaka Y, Poitout V, Robertson RP (2001) Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet cell triacylglycerol content and decreased insulin gene mRNA level in Zucker Diabetic Fatty rats. Diabetes 50:2481–2486

    Article  PubMed  CAS  Google Scholar 

  • Idris I, Donnelly R (2009) Sodium–glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab 11:79–88

    Article  PubMed  CAS  Google Scholar 

  • Isaji M (2007) Sodium–glucose cotransporter inhibitors for diabetes. Curr Opin Investig Drugs 8:285–292

    PubMed  CAS  Google Scholar 

  • Jabbour SA, Goldstein BJ (2008) Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes. Int J Clin Pract 62:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi A, Utsuno A, Kazuta K, Yoshida S, Kageyama S (2010) ASP1941, a novel, selective SGLT2 inhibitor, was effective and safe in Japanese healthy volunteers and patients with type 2 diabetes mellitus. Diabetes 59(Suppl 1):A21 (abstract 75-OR)

    Google Scholar 

  • Katsuno K, Fujimori Y, Takemura Y, Hiratochi M, Itoh F, Komatsu Y, Fujikura H, Isaji M (2007) Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 320:323–330

    Article  PubMed  CAS  Google Scholar 

  • Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M (2009) Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther 85:513–519

    Article  PubMed  CAS  Google Scholar 

  • Leese HJ, Semenza G (1973) On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 248:8170–8173

    PubMed  CAS  Google Scholar 

  • List JF, Woo V, Morales E, Tang W, Fiedorek FT (2009) Sodium–glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650–657

    Article  PubMed  CAS  Google Scholar 

  • Magen D, Sprecher E, Zelikovic I, Skorecki K (2005) A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int 67:34–41

    Article  PubMed  CAS  Google Scholar 

  • Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamasita S (2006) Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci 29:240–250

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Odaka H, Ikeda H (1992) Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55(Suppl):314S–317S

    PubMed  CAS  Google Scholar 

  • Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Taylor JR, Obermeier MT, Humphreys WG, Khanna A, Discenza L, Robertson JG, Wang A, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM, Washburn WN (2008) Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 51:1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T, Kanai Y, Endou H (1999) T-1095, an inhibitor of renal Na+−glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48:1794–1800

    Article  PubMed  CAS  Google Scholar 

  • Oku A, Ueta K, Arakawa K, Kano-Ishihara T, Matsumoto M, Adachi T, Yasuda K, Tsuda K, Saito A (2000) Antihyperglycemic effect of T-1095 via inhibition of renal Na+-glucose cotransporters in streptozotocin-induced diabetic rats. Biol Pharm Bull 23:1434–1437

    Article  PubMed  CAS  Google Scholar 

  • Pajor AM, Wright EM (1992) Cloning and functional expression of a mammalian Na+/nucleoside cotransporter. A member of the SGLT family. J Biol Chem 267:3557–3560

    PubMed  CAS  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Investig 116:1802–1812

    Article  PubMed  CAS  Google Scholar 

  • Rossetti L, Shulman GI, Zawalich W, DeFronzo RA (1987a) Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Investig 80:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987b) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Investig 79:1510–1515

    Article  PubMed  CAS  Google Scholar 

  • Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, Brodehl J, Daschner M, Ehrich JH, Kemper M, Li Volti S, Neuhaus T, Skovby F, Swift PG, Schaub J, Klaerke D (2003) Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 14:2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Sonnenblick M, Friedlander Y, Rosin AJ (1993) Diuretic-induced hyponatremia. Review and analysis of 129 reported patients. Chest 103:601–606

    Article  PubMed  CAS  Google Scholar 

  • Stahl M, Berger W (1999) Higher incidence of severe hypoglycaemia leading to hospital admission in type 2 diabetic patients treated with long-acting versus short-acting sulphonylureas. Diabet Med 16:586–590

    Article  PubMed  CAS  Google Scholar 

  • Tsukada J, Tahara A, Tomura Y, Ki W, Kusayama T, Ishii N, Yatsu T, Uchida W, Taniguchi N, Tanaka A (2001) Effects of YM471, a nonpeptide AVP V1A and V2 receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells. Br J Pharmacol 133:746–754

    Article  PubMed  CAS  Google Scholar 

  • Turk E, Zabel B, Mundlos S, Dyer J, Wright EM (1991) Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354–356

    Article  PubMed  CAS  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood–glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  • Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576

    PubMed  CAS  Google Scholar 

  • van den Heuvel LP, Assink K, Willemsen M, Monnens L (2002) Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 111:544–547

    Article  PubMed  Google Scholar 

  • Vichayanrat A, Ploybutr S, Tunlakit M, Watanakejorn P (2002) Efficacy and safety of voglibose in comparison with acarbose in type 2 diabetic patients. Diabetes Res Clin Pract 55:99–103

    Article  PubMed  CAS  Google Scholar 

  • Washburn WN (2009) Evolution of sodium glucose co-transporter 2 inhibitors as anti-diabetic agents. Expert Opin Ther Patents 19:1485–1499

    Article  CAS  Google Scholar 

  • Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA (1992) Cloning of a human kidney cDNA with similarity to the sodium–glucose cotransporter. Am J Physiol 263:F459–F465

    PubMed  CAS  Google Scholar 

  • Wright EM (2001) Renal Na+-glucose cotransporters. Am J Physiol Renal Physiol 280:F10–F18

    PubMed  CAS  Google Scholar 

  • Wright EM, Turk E (2004) The sodium/glucose cotransporter family SLC5. Pflugers Arch 447:510–518

    Article  PubMed  CAS  Google Scholar 

  • Wright EM, Hirayama BA, Loo DF (2007) Active sugar transport in health and disease. J Intern Med 261:32–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Drs. Isao Yanagisawa, Seitaro Mutoh, Yasuaki Shimizu, Wataru Uchida, and Shinichi Tsukamoto (Astellas Pharma Inc.) for their valuable comments and continuing encouragement.

Conflict of interest

A. Tahara, E. Kurosaki, M. Yokono, D. Yamajuku, R. Kihara, Y. Hayashizaki, T. Takasu, M. Imamura, L. Qun, M. Sasamata, and M. Shibasaki are employees of Astellas Pharma Inc. H. Tomiyama, Y. Kobayashi, and A. Noda are employees of Kotobuki Pharmaceutical Co. Ltd. Ipragliflozin is in clinical development by Astellas Pharma Inc. and Kotobuki Pharmaceutical Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Tahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahara, A., Kurosaki, E., Yokono, M. et al. Pharmacological profile of ipragliflozin (ASP1941), a novel selective SGLT2 inhibitor, in vitro and in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 385, 423–436 (2012). https://doi.org/10.1007/s00210-011-0713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0713-z

Keywords

Navigation