Skip to main content

Advertisement

Log in

Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Statins exert anti-inflammatory effects and downregulate matrix metalloproteinases (MMPs) expression, thus contributing to restore cardiovascular homeostasis in cardiovascular diseases. We aimed at comparing the effects of different statins (simvastatin, atorvastatin, and pravastatin) on MMP-2, MMP-9, tissue inhibitors of metalloproteinases (TIMP)-1, TIMP-2, and MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios released by human umbilical vein endothelial cells (HUVEC) stimulated by phorbol myristate acetate (PMA). HUVECs were incubated with statins (0.1–10 μM) for 12 h before stimulation with PMA 100 nM. Monolayers were used to perform cell viability assays and the supernatants were collected to determine MMPs and TIMPs levels by gelatin zymography and/or enzyme immunoassay. While treatment with PMA increased MMP-9 and TIMP-1 levels (by 556% and 159%, respectively; both P < 0.05), it exerted no effects on MMP-2 and TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, attenuated PMA-induced increases in MMP-9 levels (P < 0.05). Only atorvastatin decreased baseline MMP-2 levels significantly (P < 0.05). We found no effects on TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, decreased MMP-9/TIMP-1 ratio significantly (both P < 0.05), whereas atorvastatin and pravastatin, but not simvastatin, decreased MMP-2/TIMP-2 ratio significantly (both P < 0.05). Our data support the notion that statins with different physicochemical features exert variable effects on MMP/TIMP ratios (which reflect net MMP activity). Our results suggest that more lipophilic statins (simvastatin and atorvastatin), but not the hydrophilic statin pravastatin, downregulate net MMP-9 activity. However, atorvastatin and pravastatin may downregulate net MMP-2 activity. The clinical implications of the present findings deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barter MJ, Hui W, Lakey RL, Catterall JB, Cawston TE, Young DA (2010) Lipophilic statins prevent matrix metalloproteinase-mediated cartilage collagen breakdown by inhibiting protein geranylgeranylation. Ann Rheum Dis 69:2189–2198

    Article  PubMed  CAS  Google Scholar 

  • Bellosta S, Via D, Canavesi M, Pfister P, Fumagalli R, Paoletti R, Bernini F (1998) Hmg-coa reductase inhibitors reduce mmp-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 18(11):1671–1678

    PubMed  CAS  Google Scholar 

  • Belo VA, Souza-Costa DC, Lana CM, Caputo FL, Marcaccini AM, Gerlach RF, Bastos MG, Tanus-Santos JE (2009) Assessment of matrix metalloproteinase (mmp)-2, mmp-8, mmp-9, and their inhibitors, the tissue inhibitors of metalloproteinase (timp)-1 and timp-2 in obese children and adolescents. Clin Biochem 42(10–11):984–990

    Article  PubMed  CAS  Google Scholar 

  • Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE (2008) Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 198(2):320–331

    Article  PubMed  CAS  Google Scholar 

  • Castro MM, Rizzi E, Prado CM, Rossi MA, Tanus-Santos JE, Gerlach RF (2010) Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol 29(3):194–201

    Article  PubMed  CAS  Google Scholar 

  • Castro MM, Rizzi E, Rodrigues GJ, Ceron CS, Bendhack LM, Gerlach RF, Tanus-Santos JE (2009) Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med 46(9):1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Chase AJ, Newby AC (2003) Regulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J Vasc Res 40(4):329–343

    Article  PubMed  CAS  Google Scholar 

  • Chow AK, Cena J, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152(2):189–205

    Article  PubMed  CAS  Google Scholar 

  • Corpataux JM, Naik J, Porter KE, London NJ (2005) A comparison of six statins on the development of intimal hyperplasia in a human vein culture model. Eur J Vasc Endovasc Surg 29(2):177–181

    Article  PubMed  Google Scholar 

  • Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84(3):413–428

    Article  PubMed  CAS  Google Scholar 

  • Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77(5):863–868

    PubMed  CAS  Google Scholar 

  • Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90(3):251–262

    PubMed  CAS  Google Scholar 

  • Gerlach RF, Demacq C, Jung K, Tanus-Santos JE (2007) Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (mmp)-9 levels in serum versus plasma. Clin Biochem 40(1–2):119–123

    Article  PubMed  CAS  Google Scholar 

  • Gerlach RF, Uzuelli JA, Souza-Tarla CD, Tanus-Santos JE (2005) Effect of anticoagulants on the determination of plasma matrix metalloproteinase (mmp)-2 and mmp-9 activities. Anal Biochem 344(1):147–149

    Article  PubMed  CAS  Google Scholar 

  • Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL (1992) Interaction of 92-kda type iv collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267(7):4583–4591

    PubMed  CAS  Google Scholar 

  • Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74(2):111–122

    PubMed  CAS  Google Scholar 

  • Goncalves FM, Jacob-Ferreira AL, Gomes VA, Casella-Filho A, Chagas AC, Marcaccini AM, Gerlach RF, Tanus-Santos JE (2009) Increased circulating levels of matrix metalloproteinase (mmp)-8, mmp-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta 403(1–2):173–177

    Article  PubMed  CAS  Google Scholar 

  • Hah N, Lee ST (2003) An absolute role of the pkc-dependent nf-kappab activation for induction of mmp-9 in hepatocellular carcinoma cells. Biochem Biophys Res Commun 305(2):428–433

    Article  PubMed  CAS  Google Scholar 

  • Hurks R, Hoefer IE, Vink A, Pasterkamp G, Schoneveld A, Kerver M, de Vries JP, Tangelder MJ, Moll FL (2010) Different effects of commonly prescribed statins on abdominal aortic aneurysm wall biology. Eur J Vasc Endovasc Surg 39(5):569–576

    Article  PubMed  CAS  Google Scholar 

  • Ikeda U, Shimpo M, Ohki R, Inaba H, Takahashi M, Yamamoto K, Shimada K (2000) Fluvastatin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells. Hypertension 36(3):325–329

    PubMed  CAS  Google Scholar 

  • Jacob-Ferreira AL, Palei AC, Cau SB, Moreno H Jr, Martinez ML, Izidoro-Toledo TC, Gerlach RF, Tanus-Santos JE (2010) Evidence for the involvement of matrix metalloproteinases in the cardiovascular effects produced by nicotine. Eur J Pharmacol 627(1–3):216–222

    Article  PubMed  CAS  Google Scholar 

  • Jakobisiak M, Bruno S, Skierski JS, Darzynkiewicz Z (1991) Cell cycle-specific effects of lovastatin. Proc Natl Acad Sci U S A 88(9):3628–3632

    Article  PubMed  CAS  Google Scholar 

  • Kamio K, Liu XD, Sugiura H, Togo S, Kawasaki S, Wang X, Ahn Y, Hogaboam C, Rennard SI (2010) Statins inhibit matrix metalloproteinase release from human lung fibroblasts. Eur Respir J 35(3):637–646

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85(3):413–423

    Article  PubMed  CAS  Google Scholar 

  • Kimata M, Ishizaki M, Tanaka H, Nagai H, Inagaki N (2006) Production of matrix metalloproteinases in human cultured mast cells: involvement of protein kinase c-mitogen activated protein kinase kinase-extracellular signal-regulated kinase pathway. Allergol Int 55(1):67–76

    Article  PubMed  CAS  Google Scholar 

  • Lacchini R, Silva PS, Tanus-Santos JE (2010) A pharmacogenetics-based approach to reduce cardiovascular mortality with the prophylactic use of statins. Basic Clin Pharmacol Toxicol 106(5):357–361

    PubMed  CAS  Google Scholar 

  • Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  PubMed  CAS  Google Scholar 

  • Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91(11):2844–2850

    PubMed  CAS  Google Scholar 

  • Liu HT, Li WM, Xu G, Li XY, Bai XF, Wei P, Yu C, Du YG (2009) Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol Res 59(3):167–175

    Article  PubMed  CAS  Google Scholar 

  • Loftus IM, Naylor AR, Bell PR, Thompson MM (2001) Plasma mmp-9—a marker of carotid plaque instability. Eur J Vasc Endovasc Surg 21(1):17–21

    Article  PubMed  CAS  Google Scholar 

  • Luan Z, Chase AJ, Newby AC (2003) Statins inhibit secretion of metalloproteinases-1, -2, -3, and −9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 23(5):769–775

    Article  PubMed  CAS  Google Scholar 

  • Massaro M, Zampolli A, Scoditti E, Carluccio MA, Storelli C, Distante A, De Caterina R (2010) Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc Res 86(2):311–320

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    Article  PubMed  CAS  Google Scholar 

  • Nagassaki S, Sertorio JT, Metzger IF, Bem AF, Rocha JB, Tanus-Santos JE (2006) Enos gene t-786c polymorphism modulates atorvastatin-induced increase in blood nitrite. Free Radic Biol Med 41(7):1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85(1):1–31

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Schulz R, Liaudet L, Szabo C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26(6):302–310

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Kim A, Oh JH, Chung AS (2007) Methylseleninic acid inhibits pma-stimulated pro-mmp-2 activation mediated by mt1-mmp expression and further tumor invasion through suppression of nf-kappab activation. Carcinogenesis 28(4):837–847

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer M, Mitmaker B, Obrand D, Sheiner N, Abraham C, Dostanic S, Meilleur M, Sugahara T, Chalifour LE (2010) Atorvastatin modulates matrix metalloproteinase expression, activity, and signaling in abdominal aortic aneurysms. Vasc Endovascular Surg 44(2):116–122

    Article  PubMed  Google Scholar 

  • Souza-Costa DC, Figueiredo-Lopes L, Alves-Filho JC, Semprini MC, Gerlach RF, Cunha FQ, Tanus-Santos JE (2007a) Protective effects of atorvastatin in rat models of acute pulmonary embolism: involvement of matrix metalloproteinase-9. Crit Care Med 35(1):239–245

    Article  PubMed  CAS  Google Scholar 

  • Souza-Costa DC, Sandrim VC, Lopes LF, Gerlach RF, Rego EM, Tanus-Santos JE (2007b) Anti-inflammatory effects of atorvastatin: modulation by the t-786c polymorphism in the endothelial nitric oxide synthase gene. Atherosclerosis 193(2):438–444

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  • Viappiani S, Sariahmetoglu M, Schulz R (2006) The role of matrix metalloproteinase inhibitors in ischemia-reperfusion injury in the liver. Curr Pharm Des 12(23):2923–2934

    Article  PubMed  CAS  Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Boyd DD (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211(1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Zalba G, Fortuno A, Orbe J, San Jose G, Moreno MU, Belzunce M, Rodriguez JA, Beloqui O, Paramo JA, Diez J (2007) Phagocytic nadph oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: implications for human atherosclerosis. Arterioscler Thromb Vasc Biol 27(3):587–593

    Article  PubMed  CAS  Google Scholar 

  • Zaltsman AB, George SJ, Newby AC (1999) Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 from the aortas of cholesterol fed rabbits partially counterbalances increased metalloproteinase activity. Arterioscler Thromb Vasc Biol 19(7):1700–1707

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Eduardo Tanus-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izidoro-Toledo, T.C., Guimaraes, D.A., Belo, V.A. et al. Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn-Schmiedeberg's Arch Pharmacol 383, 547–554 (2011). https://doi.org/10.1007/s00210-011-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0623-0

Keywords

Navigation