Skip to main content

Advertisement

Log in

Ambivalent effects of compound C (dorsomorphin) on inflammatory response in LPS-stimulated rat primary microglial cultures

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 04 February 2017

Abstract

It was proven that compound C displays beneficial effects in models of inflammatory-induced anemia, ischemic stroke, and fibrodysplasia ossificans progressiva. Compound C influence on microglia, playing a major role in neuroinflammation, has not been evaluated yet. The aim of the present study was to determine the effect of compound C on cytokine release, NO, and reactive oxygen species (ROS) production. The rat microglial cultures were obtained by shaking the primary mixed glial cultures. Cytokine and nitrite concentrations were assayed using ELISA kits. ROS were assayed with nitroblue tetrazolium chloride. AMPK activity was assayed using the SAMS peptide. The expression of arginase I, NF-κB p65, and hypoxia-inducible factor-1 alpha (HIF-1 alpha) was evaluated using Western blot. Compound C displayed ambivalent effect depending on microglia basal activity. It up-regulated the release of TNF alpha and NO production and increased the expression of arginase I in non-stimulated microglia. However, compound C down-regulated IL-1 beta, IL-6 and TNF alpha release, NO, ROS production, and AMPK activity, diminished NF-κB and HIF-1 alpha expression, as well as increased arginase I expression in lipopolysaccharide (LPS)-stimulated microglia. Compound C did not affect iNOS expression and IL-10 and TGF-beta release in non-stimulated and LPS-stimulated microglia. The observed alterations in the release or production of inflammatory mediators may be explained by the changes in NF-κB, HIF-1 alpha, and arginase I expression and 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolinum bromide values in response to LPS, whereas the basis for the compound C effect on non-stimulated microglia remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:1340–1346

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–251

    Article  CAS  PubMed  Google Scholar 

  • Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27

    Article  PubMed  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  Google Scholar 

  • Davies SP, Carling DG, Hardie DG (1989) Tissue distribution of the AMP-activated protein kinase and lack of activation by cyclic-AMP-dependent protein kinase studied using a specific and sensitive peptide assay. Eur J Biochem 186:123–128

    Article  CAS  PubMed  Google Scholar 

  • Dröse S, Hanley PJ, Brandt U (2009) Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 1790:558–565

    PubMed  Google Scholar 

  • Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Emerling BM, Viollet B, Tormos KV, Chandel NS (2007) Compound C inhibits hypoxic activation of HIF-1 independent of AMPK. FEBS Lett 581:5727–5731

    Article  CAS  PubMed  Google Scholar 

  • Fraley ME, Rubino RS, Hoffman WF, Hambaugh SR, Arrington KL, Hungate RW, Bilodeau MT, Tebben AJ, Rutledge RZ, Kendall RL, McFall RC, Huckle WR, Coll KE, Thomas KA (2002) Optimization of a pyrazolo[1,5-a]pyrimidine class of KDR kinase inhibitors: improvements in physical properties enhance cellular activity and pharmacokinetics. Bioorg Med Chem Lett 12:3537–3541

    Article  CAS  PubMed  Google Scholar 

  • Gebicke-Haerter PJ, Bauer J, Schobert A, Northoff H (1989) Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J Neurosci 9:183–194

    CAS  PubMed  Google Scholar 

  • Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I (2004) 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci 24:479–487

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effectors cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Hong JH, Lee GT, Lee JH, Kwon SJ, Park SH, Kim SJ, Kim IY (2009) Effect of bone morphogenetic protein-6 on macrophages. Immunology 128:e442–450

    Article  PubMed  Google Scholar 

  • Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yoon MY, Choi SL, Kang I, Kim SS, Kim YS, Choi YK, Ha J (2001) Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J Biol Chem 276:19102–19110

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Na HJ, Kim CK, Kim JY, Ha KS, Lee H, Chung HT, Kwon HJ, Kwon YG, Kim YM (2008) The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: role of H(2)O(2) in NF-kappaB activation. Free Radic Biol Med 5:885–896

    Article  Google Scholar 

  • Labuzek K, Kowalski J, Gabryel B, Herman ZS (2005) Chlorpromazine and loxapine reduce interleukin-1beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Eur Neuropsychopharmacol 15:23–30

    Article  CAS  PubMed  Google Scholar 

  • Lin HW, Levison SW (2009) Context-dependent IL-6 potentiation of interferon-gamma-induced IL-12 secretion and CD40 expression in murine microglia. J Neurochem 111:808–818

    Article  CAS  PubMed  Google Scholar 

  • McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 280:20493–20502

    Article  CAS  PubMed  Google Scholar 

  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 27:5394–5404

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nam M, Lee WH, Bae EJ, Kim SG (2008) Compound C inhibits clonal expansion of preadipocytes by increasing p21 level irrespectively of AMPK inhibition. Arch Biochem Biophys 479:74–81

    Article  CAS  PubMed  Google Scholar 

  • Oh YT, Lee JY, Yoon H, Lee EH, Baik HH, Kim SS, Ha J, Yoon KS, Choe W, Kang I (2008) Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Sp1-dependent pathway in BV2 murine microglial cells. Neurosci Lett 431:155–160

    Article  CAS  PubMed  Google Scholar 

  • Pyo H, Jou I, Jung S, Hong S, Joe EH (1998) Mitogen-activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia. Neuroreport 9:871–874

    Article  CAS  PubMed  Google Scholar 

  • Re F, Belyanskaya SL, Riese RJ, Cipriani B, Fischer FR, Granucci F, Ricciardi-Castagnoli P, Brosnan C, Stern LJ, Strominger JL, Santambrogio L (2002) Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J Immunol 169:2264–2273

    CAS  PubMed  Google Scholar 

  • Satoh J, Kim SU (1995) Ganglioside markers GD3, GD2, and A2B5 in fetal human neurons and glial cells in culture. Dev Neurosci 17:137–148

    Article  CAS  PubMed  Google Scholar 

  • Si QS, Nakamura Y, Schubert P, Rudolphi K, Kataoka K (1996) Adenosine and propentofylline inhibit the proliferation of cultured microglial cells. Exp Neurol 137:345–349

    Article  CAS  PubMed  Google Scholar 

  • Sonoda J, Laganière J, Mehl IR, Barish GD, Chong LW, Li X, Scheffler IE, Mock DC, Bataille AR, Robert F, Lee CH, Giguère V, Evans RM (2007) Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev 21:1909–1920

    Article  CAS  PubMed  Google Scholar 

  • Sonoki T, Nagasaki A, Gotoh T, Takiguchi M, Takeya M, Matsuzaki H, Mori M (1997) Coinduction of nitric-oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide. J Biol Chem 272:3689–3693

    Article  CAS  PubMed  Google Scholar 

  • Stott DI (1989) Immunoblotting and dot blotting. J Immunol Methods 119:153–187

    Article  CAS  PubMed  Google Scholar 

  • Tamás P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203:1665–1670

    Article  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  • Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341

    Article  CAS  PubMed  Google Scholar 

  • Tusell JM, Ejarque-Ortiz A, Mancera P, Solà C, Saura J, Serratosa J (2009) Upregulation of p21Cip1 in activated glial cells. Glia 57:524–534

    Article  PubMed  Google Scholar 

  • Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4:13–24

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD (2002) Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci 22:3484–3492

    CAS  PubMed  Google Scholar 

  • Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT (2008a) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4:33–41

    Article  CAS  Google Scholar 

  • Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008b) BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med 14:1363–1369

    Article  CAS  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mrs. Jaroslawa Sprada, Mrs. Halina Klimas, and Mrs. Anna Bielecka for their excellent technical support. This work was supported by a research grant KNW-1-062/09 from Medical University of Silesia, Katowice, Poland. None of the authors has any conflict of interest. The study was approved by the Ethical Committee of the Medical University of Silesia. The experiments comply with the current law of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Łabuzek.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00210-017-1348-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łabuzek, K., Liber, S., Gabryel, B. et al. Ambivalent effects of compound C (dorsomorphin) on inflammatory response in LPS-stimulated rat primary microglial cultures. Naunyn-Schmied Arch Pharmacol 381, 41–57 (2010). https://doi.org/10.1007/s00210-009-0472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0472-2

Keywords

Navigation