Skip to main content

Advertisement

Log in

Urotensin-II-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Urotensin-II (U-II), the most potent mammalian vasoconstrictor identified, and its receptor, UT, exhibits increased expression in cardiac tissue and plasma in congestive heart failure (CHF) patients. Cardiomyocyte hypertrophy is primarily responsible for increased myocardial mass associated with cardiac injury. Neurohumoral factors such as angiotensin-II, endothelin-1, catecholamines, and inflammatory cytokines are thought to mediate this response. U-II shares similar biological activities with other hypertrophic Gq-coupled receptor ligands such as angiotensin-II and endothelin-1, but a role for U-II in cardiomyocyte hypertrophy has not been characterized. The hypothesis of the current study was that U-II, acting through its Gq-coupled receptor UT plays a hypertrophic role in cardiac hypertrophic remodeling. We report that adenoviral upregulation of the UT receptor “unmasked” U-II-induced hypertrophy in H9c2 cardiomyocytes, with a threshold response of 202±8 binding sites/cell. U-II was equally as efficacious as phenylephrine in inducing hypertrophy, measured by a reporter assay (EC50 0.7±0.2 nM) and [3H]-leucine incorporation (EC50 150±40 nM). A competitive peptidic UT receptor antagonist, BIM-23127, inhibited U-II-induced hypertrophy (K B 34±6 nM). U-II did not affect cell proliferation or apoptosis, indicating that U-II is more hypertrophic than apoptotic or hyperplastic in cardiomyocytes. U-II (10 nM) stimulated interleukin-6 release in UT-expressing cardiomyocytes (4.6-fold at 6 h). Finally, in a rat heart failure model, cardiac ventricular mRNA expression of U-II, UT receptor, interleukin-6, and interleukin-1-β is increased time-dependently following myocardial injury. These results indicate that U-II might play a role in cardiac remodeling associated with CHF by stimulation of cardiomyocyte hypertrophy via UT, and through upregulation of inflammatory cytokines. As such, UT antagonism may represent a novel therapeutic target for the clinical management of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Ohlstein EH, Bergsma DJ, Douglas SA (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286

    Article  CAS  PubMed  Google Scholar 

  • Behm DJ, Harrison SM, Ao Z, Maniscalco K, Pickering SJ, Grau EV, Woods TN, Coatney RW, Doe CP, Willette RN, Johns DG, Douglas SA (2003) Deletion of the UT receptor gene results in the selective loss of urotensin-II contractile activity in aortae isolated from UT receptor knockout mice. Br J Pharmacol 139:464–472

    Article  CAS  PubMed  Google Scholar 

  • Bergmann MW, Loser P, Dietz R, von Harsdorf R (2001) Effect of NF-kappa B Inhibition on TNF-alpha-induced apoptosis and downstream pathways in cardiomyocytes. J Mol Cell Cardiol 33:1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Casscells W, Bazoberry F, Speir E, Thompson N, Flanders K, Kondaiah P, Ferrans VJ, Epstein SE, Sporn M (1990) Transforming growth factor-1 in normal heart and in myocardial infarction. Ann NY Acad Sci 593:148–160

    CAS  PubMed  Google Scholar 

  • Chapman JG, Magee WP, Stukenbrok HA, Beckius GE, Milici AJ, Tracey WR (2002) A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin reduces myocardial ischemic injury. Eur J Pharmacol 456:59–68

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Burnett JC (1999) The natriuretic peptides in heart failure: diagnostic and therapeutic potentials. Proc Assoc Am Phys 111:406–416

    CAS  PubMed  Google Scholar 

  • Chen QM, Tu VC, Wu Y, Bahl JJ (2000) Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Arch Biochem Biophys 373:242–248

    Article  CAS  PubMed  Google Scholar 

  • Colucci WS (1997) Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80:15L–25L

    Article  CAS  PubMed  Google Scholar 

  • Deten A, Volz HC, Briest W, Zimmer HG (2002) Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 55:329–340

    Article  CAS  PubMed  Google Scholar 

  • Deten A, Volz HC, Briest W, Zimmer HG (2003) Differential cytokine expression in myocytes and non-myocytes after myocardial infarction in rats. Mol Cell Biochem 242:47–55

    Article  CAS  PubMed  Google Scholar 

  • Douglas SA, Ohlstein EH (2000) Urotensin receptors. In: Girdlestone D (ed) The IUPHAR compendium of receptor characterization and classification. IUPHAR, London, pp 365–372

    Google Scholar 

  • Douglas SA, Beck JR, Elliot JD, Ohlstein EH (1995) Pharmacological evidence for the presence of three distinct functional endothelin receptor subtypes in the rabbit lateral saphenous vein. Br J Pharmacol 114:1529–1540

    CAS  PubMed  Google Scholar 

  • Douglas SA, Sulpizio AC, Piercy V, Sarau HM, Ames RS, Aiyar NV, Ohlstein EH, Willette RN (2000) Differential vasoconstrictor activity of human urotensin-II in vascular tissue isolated from the rat, mouse, dog, pig, marmoset and cynomolgus monkey. Br J Pharmacol 131:1262–1274

    CAS  PubMed  Google Scholar 

  • Douglas SA, Tayara L, Ohlstein EH, Halawa N, Giaid A (2002) Congestive heart failure and expression of myocardial urotensin II. Lancet 359:1990–1997

    Article  CAS  PubMed  Google Scholar 

  • Dracopoli NC, Haines JL, Korf BR, Morton CC, Seidman CE, Seidman JG, Smith DR (1999) Chapter 12: vectors for gene therapy. In: Boyle A (ed) Current protocols in human genetics. Wiley, New York

    Google Scholar 

  • Elshourbagy NA, Douglas SA, Shabon U, Harrison S, Duddy G, Sechler JL, Ao Z, Maleeff BE, Naselsky D, Disa J, Aiyar NV (2002) Molecular and pharmacological characterization of genes encoding urotensin-II peptides and their cognate G-protein-coupled receptors from the mouse and monkey. Br J Pharmacol 136:9–22

    CAS  PubMed  Google Scholar 

  • Frangogiannis ND, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  CAS  PubMed  Google Scholar 

  • Gaballa MA, Goldman S (2002) Ventricular remodeling in heart failure. J Card Fail 8:S476–S485

    Article  PubMed  Google Scholar 

  • Gao F, Yue T-L, Shi DW, Christopher TA, Lopez BL, Ohlstein EH, Barone GC, Ma XL (2002) p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation. Cardiovasc Res 53:414–422

    Article  CAS  PubMed  Google Scholar 

  • Herold CL, Behm DJ, Buckley PT, Foley JJ, Wixted WE, Sarau HM, Douglas SA (2003) The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors. Br J Pharmacol 139:203–207

    Article  CAS  PubMed  Google Scholar 

  • Katz AM (2003) Pathophysiology of heart failure: identifying targets for pharmacotherapy. Med Clin North Am 87:303–316

    CAS  PubMed  Google Scholar 

  • Kimes BW, Brandt L (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381

    CAS  PubMed  Google Scholar 

  • Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJE, Sabbadini RA (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98:2854–2865

    CAS  PubMed  Google Scholar 

  • Liu Y-H, Yang X-P, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 272:H722–H727

    CAS  PubMed  Google Scholar 

  • Morimoto A, Hasegawa H, Cheng H-J, Cheng C-P (2002) Urotensin-II inhibits left ventricular and myocyte contractile performance and [Ca2+]I transient: normal vs CHF. Circulation 106 [Suppl 19]:II-26

    Google Scholar 

  • Ng LL, Loke I, O’Brien RJ, Squire IB, Davies JE (2002) Plasma urotensin in human systolic heart failure. Circulation 106:2877–2880

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti A, Michel J-B (1999) Cardiac fibrosis and inflammation: interaction with hemodynamics and hormonal factors. Cardiovasc Res 41:532–543

    Article  CAS  PubMed  Google Scholar 

  • Onan D, Pipolo L, Yang E, Hannan RD, Thomas WG (2004) Urotensin-II promotes hypertrophy of cardiac myocytes via mitogen-activated protein kinases. Mol Endocrinol 18:2344–2354

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1998) Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 98:149–156

    CAS  PubMed  Google Scholar 

  • Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406–H1414

    CAS  PubMed  Google Scholar 

  • Richards AM, Nicholls MG, Lainchbury JG, Fisher S, Yandle TG (2002) Plasma urotensin II in heart failure. Lancet 360:545–546

    Article  CAS  PubMed  Google Scholar 

  • Russell FD, Meyers D, Galbraith AJ, Bett N, Toth I, Kearns P, Molenaar P (2003) Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. Am J Physiol 285:H1576–H1581

    CAS  Google Scholar 

  • Sadoshima J-I, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423

    CAS  PubMed  Google Scholar 

  • Sano M, Fukuda K, Kodama H, Pan J, Saito M, Matsuzaki J, Takahashi T, Makino S, Kato T, Ogawa S (2000) Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem 275:29717–29723

    Article  CAS  PubMed  Google Scholar 

  • Shubeita HE, McDonough PM, Harris AN, Knowton KU, Glembotski CC, Brown JH, Chein KR (1990) Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 265:20555–20562

    CAS  PubMed  Google Scholar 

  • Torre Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    CAS  PubMed  Google Scholar 

  • Tzanidis A, Hannan RD, Thomas WG, Onan D, Autelitano DJ, See F, Kelly DJ, Gilbert RE, Krum H (2003) Direct actions of urotensin II on the heart: implications for cardiac fibrosis and hypertrophy. Circ Res 93:246–253

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Burnett JC, Jougasaki M, Nishimura RA, Bailey KR, Saito Y, Nakao K, Redfield MM (1996) Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension 28:988–994

    CAS  PubMed  Google Scholar 

  • Yamauichi-Takihara Y, Kishimoto T (2000) Cytokines and their receptors in cardiovascular diseases—role of gp130 signalling pathway in cardiac myocyte growth and maintenance. Int J Exp Pathol 81:1–16

    Article  PubMed  Google Scholar 

  • Zou Y, Nagai R, Yamazaki T (2001) Urotensin II induces hypertrophic responses in cultured cardiomyocytes from neonatal rats. FEBS Lett 508:57–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Parts of this study were presented at the American Heart Association Scientific Sessions conference, 2002, in Chicago, Illinois, and at the American Heart Association Scientific Sessions conference, 2003, in Orlando, Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Johns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johns, D.G., Ao, Z., Naselsky, D. et al. Urotensin-II-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators. Naunyn-Schmiedeberg's Arch Pharmacol 370, 238–250 (2004). https://doi.org/10.1007/s00210-004-0980-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0980-z

Keywords

Navigation