Skip to main content
Log in

Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by dl-α-lipoic acid

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the effects of dl-α-lipoic acid (LA) on arsenic (As) induced alteration of glutathione (GSH) level and of the activity of glutathione-related enzymes—glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH)—in rat brain regions (cortex, hypothalamus, striatum, cerebellum and hippocampus). Male Wistar rats of 150±10 g weight were divided into four groups: control and three experimental groups supplemented with arsenic (sodium arsenite) alone (100 ppm mixed in drinking water), lipoic acid alone (70 mg kg−1 body weight), arsenic plus lipoic acid (100 ppm arsenic in drinking water plus 70 mg lipoic acid kg−1 body weight). The arsenic content of brain regions was found to increase with the administration of sodium arsenite. Arsenic exposure elicited a significant decline in glutathione content and in the activity of related enzymes, with the greatest decreases seen in the cortex, striatum, and hippocampus, whereas there were no significant differences between control rats and the group treated with lipoic acid alone. Highly elevated content of the thiobarbituric acid-reactive substance malondialdehyde (MDA) in the brain regions of arsenic-exposed rats reflected extensive lipid peroxidation (LPO) processes. Simultaneous lipoic acid treatment was effective in reducing brain regional arsenic levels and lipid peroxidation and in increasing the glutathione content and the activity of its related enzymes. Lipoic acid, by acting as an alternative sulfhydryl nucleophile to glutathione, prevents its oxidation to glutathione disulfide in detoxifying reactions against reactive oxygen species and consequently increases the activity of glutathione-related enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aposhian HV, Aposhian MM (1989) Newer developments in arsenic toxicity. J Am Coll Toxicol 8:1297–1305

    Google Scholar 

  • Ballentine R, Burford DD (1957) Determination of metals. Methods Enzymol 3:1002–1035

    Google Scholar 

  • Bjornstedt M, Kumar S, Bjorkhem L, Spyrou, G, Holmgren, A (1997) Selenium and the thioredoxin and glutaredoxin systems. Biomed Environ Sci 10:271–279

    CAS  PubMed  Google Scholar 

  • Chiou HY, Hsueh YM, Liaw KF, Horng SF, Chiang MH, Pu YS, Lin JS, Huang CH, Chen CJ (1995) Incidence of internal cancers and ingested inorganic arsenic: a 7-year follow-up study in Taiwan. Cancer Res 55:1296–1300

    CAS  PubMed  Google Scholar 

  • Cunningham ML, Zvelebi MJ, Fairlamb AH (1994) Mechanism of inhibition of trypnothione reductase and glutathione reductase by trivalent arsenicals. Eur J Biochem 221:285–295

    CAS  PubMed  Google Scholar 

  • Dong HQ, Wang KL, Ma Y (1993) A clinical analysis of 117 cases of acute arsenic poisoning. Zhonghua Nei Ke Za Zhi 32:813–815

    CAS  PubMed  Google Scholar 

  • Ellis HA, Kirkman HN (1961) A colorimetric method for assay of erythrocyte glucose-6-phosphate dehydrogenase. Proc Soc Exp Biol Med 106:607–609

    PubMed  Google Scholar 

  • Evans JL, Goldfine ID (2000) α-Lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diab Technol Therapeut 2:401–413

    Article  CAS  Google Scholar 

  • Glowinski K, Iverson LL (1966) Regional studies of catecholamines in the rat brain. The disposition of [3H] dopamine and [3H] DOPA in various regions of rat brain. J Neurochem 13:655–699

    CAS  PubMed  Google Scholar 

  • Gobel HH, Schmidt PF, Bohl J, Teltenborn B, Kramer G, Gutmann L (1990) Polyneuropathy due to arsenic intoxication: biopsy studies. J Neuropathol Exp Neurol 49:137–149

    PubMed  Google Scholar 

  • Gyurasics A, Verga F, Gregus Z (1991) Glutathione-dependent biliary excretion of arsenic. Biochem Pharmacol 42:465–468

    Article  CAS  PubMed  Google Scholar 

  • Han D, Handelman G, Marcocci L, Sen CK, Roy S, Kobuchi H, Tritschler HJ, Flohe L, Packer L (1997) Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6:321–338

    CAS  PubMed  Google Scholar 

  • Haugaard N, Haugaard ES (1970) Stimulation of glucose utilization by thioctic acid in rat diaphragm incubated in vitro. Biochim Biophys Acta 222:583–586

    CAS  PubMed  Google Scholar 

  • Hoston AA, Fairhurst S (1987) Lipid peroxidation and mechanisms of toxicity. CRC Crit Rev Toxicol 18:27–79

    Google Scholar 

  • Huang H, Huang CF, Wu DR, Jinn CM, Jan KY (1993) Glutathione as a cellular defence against arsenite toxicity in cultured Chinese hamster ovary cells. Toxicology 79:195–204

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Okamoto K, Kato K (1998) Enhancement of expression of stress proteins by agents that lower the levels of glutathione in cells. Biochim Biophys Acta 1397:223–230

    CAS  PubMed  Google Scholar 

  • Jocelyn PC (1967) The standard redox potential of cysteine-cystine from the thiol-disulfide exchange reaction with glutathione and lipoic acid. Eur J Biochem 2:327–331

    CAS  PubMed  Google Scholar 

  • Kang Y, Viswanath V, Jha N, Qiao X, Qin MOJ, Andersen JK (1999) Brain gamma glutamyl cysteine synthetase (GCS) mRNA expression patterns correlate with regional-specific enzyme activities and glutathione levels. J Neurosci Res 58:436–441

    Article  CAS  PubMed  Google Scholar 

  • Kosower NS, Kosower EM (1983) Glutathione and cell membrane thiol status. In: Larsson A, Orrenius A, Mannervik B (eds) Function of glutathione: Biochemical, physiological, toxicological and clinical aspects. Raven press, New York, pp 307–315

  • Lee TC, Wei ML, Chang WJ, Ho IC, LO JF, Jan KY, Huang H (1989) Elevation of glutathione levels and glutathione-S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In vitro Cell Dev Biol 25:442–448

    CAS  PubMed  Google Scholar 

  • Leelank BN, Bansal MP (1996) Effect of selenium supplementation on the glutathione redox system in the kidney of mice after chronic cadmium exposures. J Appl Toxicol 17:81–84

    Google Scholar 

  • Lenartowicz E (1990) A complex effect of arsenite on the formation of α-ketoglutarate in rat liver mitochondria. Arch Biochem Biophys 283:388 – 396

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maiti S, Chatterjee AK (2000) Differential response of cellular antioxidant mechanism of liver and kidney to arsenic exposure and its relation to dietary protein deficiency. Environ Toxicol Pharmacol 8:227–235

    Article  CAS  PubMed  Google Scholar 

  • Moron M, Depierre JW, Mannervik BT (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    CAS  PubMed  Google Scholar 

  • Neiger RD, Osweiler GD (1989) Effect of subacute low level dietary sodium arsenite on dogs. Fundam Appl Toxicol 13:439–451

    Article  CAS  PubMed  Google Scholar 

  • Nielson F (1995) Other trace elements. In: Ziegler EE, Filer LJ (eds) Present knowledge in nutrition (7th edn), Washington DC, ILSI Press, pp 353–377

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  • Oys-Ohta Y, Kaise T, Ochi T (1996) Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction. Mutat Res 357:123–129

    PubMed  Google Scholar 

  • Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the metabolic antioxidant α-Lipoic acid. Free Radic Biol Med 22:359–378

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Witt E, Tritschler HJ (1996) Antioxidant properties and clinical applications of alpha-lipoic acid and dihydrolipoic acid. In: Cadenas E, Packer L (eds), Handbook of antioxidants. M Dekker, New York, pp 545–591

  • Pick U, Haramaki N, Constantinescu A, Handelman GJ, Tritschler HJ, Packer L (1995) Glutathione reductase and lipoamide dehydrogenase have opposite stereospecificities for alpha-lipoic acid enantiomers. Biochem Biophys Res Commun 206:724–730

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan K, Balakumar BS, Panneerselvam C (2002) Effects of ascorbic acid and α-tocopherol on arsenic-induced oxidative stress. Hum Exp Toxicol 21:675–680

    Article  CAS  PubMed  Google Scholar 

  • Ramos O, Carrizales L, Yanez L, Mejia J, Batres L, Ortiz D, Diaz-Barriga F (1995) Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ Health Perspect 103:85–88

    CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra HG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    CAS  PubMed  Google Scholar 

  • Seaton TA, Jenner P, Marsden CD (1996) The isomers of thioctic acid alter 14C-deoxyglucose incorporation in rat basal ganglia. Biochem Pharmacol 51:983–986

    Article  CAS  PubMed  Google Scholar 

  • Sen CK, Roy S, Han D, Packer L (1997) Regulation of cellular thiols in human lymphocytes by alpha-lipoic acid: a flow cytometric analysis. Free Radic Biol Med 22:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Staal GEJ, Visser J, Veeger C (1969) Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta 185:39–48

    CAS  PubMed  Google Scholar 

  • Szinicz L, Forth W (1998) Effect of As2O3 on gluconeogenesis. Arch Toxicol 61:444–449

    Article  Google Scholar 

  • Vahter M, Marafante E, Dencker, L (1984) Tissue distribution and retention of [74As]-dimethylarsenic acid in mice and rats. Arch Environ Contam Toxicol 13:259–264

    CAS  PubMed  Google Scholar 

  • Wang TS, Shu YF, Liu YC, Jan KY, Huang H (1997) Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicology 121:221–237

    Article  Google Scholar 

  • Yamanaka K, Hasegawa A, Sawamura R, Okada S (1991) Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol 108:205–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by DST-FIST and UGC-SAP, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnakkannu Panneerselvam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shila, S., Subathra, M., Devi, M.A. et al. Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by dl-α-lipoic acid. Arch Toxicol 79, 140–146 (2005). https://doi.org/10.1007/s00204-004-0614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0614-8

Keywords

Navigation