Skip to main content

Advertisement

Log in

Periprothetische femorale Knochenreaktion nach schenkelhalserhaltender Hüftendoprothetik

CT-gestützte Osteodensitometrie 1 und 3 Jahre postoperativ

Periprosthetic femoral bone reaction after total hip arthroplasty with preservation of the collum femoris

CT-assisted osteodensitometry 1 and 3 years postoperatively

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das Ziel der Implantation kurzschaftiger Hüftendoprothesen ist eine metaphysäre Kraftübertragung und somit der Erhalt des proximalen femoralen Knochens. Mittels CT-gestützter Osteodensitometrie kann die periprothetische kortikale und spongiöse Knochendichte (KD) nach Implantation zementfreier Hüftendoprothesen in vivo bestimmt werden.

Patienten und Methoden

In einer prospektiven Studie wurden bei 31 Patienten (31 Hüften) neben den üblichen klinischen (Harris Hip Score) und nativradiologischen Untersuchungen die femorale kortikale und spongiöse KD (mg CaHA/ml) einer schenkelhalserhaltenden Prothese (C.F.P.-Schaft, Fa. Link, Hamburg) mittels CT-gestützter Osteodensitometrie 10 Tage, 1 und 3 Jahre postoperativ bestimmt.

Ergebnisse

Der proximale kortikale KD-Verlust war zwischen der Ein- (Ø −8%) und 3-Jahres-Kontrolle (Ø −22%) progredient. Distal des Trochanter minor wurden keine signifikanten kortikalen KD-Veränderungen beobachtet. Die proximale spongiöse KD-Abnahme war ebenfalls zwischen der Ein- (Ø −33%) und 3-Jahres-Kontrolle (Ø −45%) Kontrolle progredient. Der Harris Hip Score verbesserte sich von 45 Punkten präoperativ auf 93 Punkte 3 Jahre postoperativ. Nativradiologisch waren alle Prothesen ohne Nachweis von Säumen oder Osteolysen knöchern fest integriert.

Schlussfolgerung

Die periprothetische CT-gestützte Osteodensitometrie bietet die technischen Voraussetzungen, um in vivo zwischen kortikalen und spongiösen KD-Veränderungen zu differenzieren. Der progrediente proximale kortikale und spongiöse KD-Verlust zeigt, dass eine metaphysäre Kraftübertragung mit dem analysierten C.F.P.-Schaft nicht erreicht werden kann. Der fehlende kortikale KD-Verlust unterhalb des Trochanter minor deutet auf eine diaphysäre Verankerung der Prothese hin.

Abstract

Background

Short-stemmed cementless femoral components in total hip arthroplasty have been designed to preserve the proximal femoral bone stock by load transfer to the femoral metaphysis. An in vivo method of computed tomography-assisted (CT) osteodensitometry after total hip arthroplasty is presented which differentiates between cortical and cancellous bone density (BD) changes around uncemented femoral components.

Patients and methods

Cortical and cancellous periprosthetic femoral BD (mg Ca HA/ml) was determined prospectively in 31 patients at day 10, 1 year and 3 years after total hip arthroplasty with preservation of the collum femoris (C.F.P.-stem, Link, Hamburg, Germany) using computed tomography-assisted osteodensitometry. Clinical results (Harris hip score) and plain x-rays were assessed in all cases.

Results

Progressive proximal cortical BD loss was observed between the 1 year (Ø −8%) and 3 year (Ø −22%) postoperative measurements. Distal to the trochanter minor no significant cortical BD changes were observed. Proximal cancellous BD decreased progressively between the 1 year (Ø −33%) and 3 year (Ø −45%) analyses. The Harris hip score improved from 45 points pre-operatively to 93 points at the 3 year follow-up. All x-rays showed signs of stable ingrowth.

Conclusion

Periprosthetic CT osteodensitometry has the technical ability to discriminate between cortical and cancellous bone structures with respect to strain-adapted remodeling. Progressive proximal cortical and cancellous BD loss indicates that metaphyseal fixation cannot be achieved with the analyzed C.F.P. stem design. The lack of cortical BD loss below the trochanter minor suggests diaphyseal fixation of the implanted stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Albanese CV, Santori FS, Pavan L et al (2009) Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems: 37 patients followed for 3 years. Acta Orthop 80(3):291–297

    Article  PubMed  Google Scholar 

  2. Chen HH, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplasty 24(6):945–950

    Article  PubMed  CAS  Google Scholar 

  3. Draenert KD, Draenert YI, Krauspe R et al (2005) Strain adaptive bone remodelling in total joint replacement. Clin Orthop Relat Res 430:12–27

    Article  PubMed  Google Scholar 

  4. Decking R, Rokahr C, Zurstegge M et al (2008) Maintenance of bone mineral density after implantation of a femoral neck hip prosthesis. BMC Musculoskelet Disord 31(9):17

    Article  Google Scholar 

  5. Ender SA, Machner A, Pap G et al (2007) Cementless CUT femoral neck prosthesis: increased rate of aseptic loosening after 5 years. Acta Orthop 78(5):616–621

    Article  PubMed  Google Scholar 

  6. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg [Br] 69(1):45–55

    Google Scholar 

  7. Espehaug B, Havelin LI, Engesaeter LB et al (1997) Patient-related risk factors for early revision of total hip replacements. A population register-based case-control study of 674 revised hips. Acta Orthop Scand 68(3):207–215

    Article  PubMed  CAS  Google Scholar 

  8. Fink B, Wessel S, Deuretzbacher G et al (2007) Midterm results of „thrust plate prosthesis. J Arthroplasty 22(5):703–710

    Article  PubMed  Google Scholar 

  9. Freeman, MAR, Plante-Bordeneuve P (1994) Early migration and late aseptic failure of proximal femoral prostheses. J Bone Joint Surg [Br] 76-B:432–438

    Google Scholar 

  10. Furnes O, Lie SA, Espehaug B et al (2001) Hip disease and the prognosis of total hip replacements. A review of 53,698 primary total hip replacements reported to the Norwegian Arthroplasty Register 1987–99. J Bone Joint Surg [Br] 83(4):579–586

    Google Scholar 

  11. Gibbons CE, Davies AJ, Amis AA et al (2001) Periprosthetic bone mineral density changes with femoral components of differing design philosophy. Int Orthop 25(2):89–92

    Article  PubMed  CAS  Google Scholar 

  12. Gruen TA, McNeice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    PubMed  Google Scholar 

  13. Haddad RJ, Cook SD, Brinker MR (1990) A comparison of three varieties of noncemented porous-coated hip replacement. J Bone Joint Surg [Br] 72(1):2–8

    Google Scholar 

  14. Houde J, Marchetti M, Duquette J et al (1995) Correlation of bone mineral density and femoral neck hardness in bovine and human samples. Calcif Tissue Int 57(3):201–205

    Article  PubMed  CAS  Google Scholar 

  15. Ishaque BA, Wienbeck S, Basad E, Sturz H (2004) Radiological analysis of the thrust plate prosthesis (TPP). Z Orthop Ihre Grenzgeb 142(1):15–24

    Article  PubMed  CAS  Google Scholar 

  16. Johnston RC, Fitzgerald RH Jr, Harris WH et al (1990) Clinical and radiographic evaluation of total hip replacement. A standard system of terminology for reporting results. J Bone Joint Surg [Am] 72(2):161–168

    Google Scholar 

  17. Kobayashi S, Saito N, Horiuchi H et al (2000) Poor bone quality or hip structure as risk factors affecting survival of total-hip arthroplasty. Lancet 355:1499–1504

    Article  PubMed  CAS  Google Scholar 

  18. Levenston ME, Beaupre GS, Schurman DJ, Carter DR (1993) Computer simulations of stress-related bone remodelling around noncemented acetabular components. J Arthroplasty 8:595–605

    Article  PubMed  CAS  Google Scholar 

  19. Mazess R B (1982) On aging bone loss. Clin Orthop Relat Res 165:239–252

    PubMed  Google Scholar 

  20. Morrey BF (1989) Short-stemmed uncemented femoral component for primary hip arthroplasty. Clin Orthop Relat Res 249:169175

    PubMed  Google Scholar 

  21. Mueller LA, Nowak TE, Haeberle L et al (2010) Progressive femoral cortical and cancellous bone density loss after uncemented tapered-design stem fixation. Acta Orthop 24 [Epub ahead of print]

  22. Mueller LA, Voelk M, Kress A et al (2007) An ABJS best paper: progressive cancellous and cortical bone remodeling after press-fit cup fixation: a 3-year follow-up. Clin Orthop Relat Res 463:213–220

    PubMed  Google Scholar 

  23. Müller LA, Wenger N, Schramm M et al (2010) Seventeen-year survival of the cementless CLS Spotorno stem. Arch Orthop Trauma Surg 130(2):269–275

    Article  PubMed  Google Scholar 

  24. Pipino F, Calderale PM (1987) Biodynamic total hip prosthesis. Ital J Orthop Traumatol 13:289

    PubMed  CAS  Google Scholar 

  25. Pipino F, Keller A (2006) Tissue-sparing surgery: 25 years‘experience with femoral neck preserving hip arthroplasty. J Orthopaed Traumatol 7:36–41

    Article  Google Scholar 

  26. Schimmel J W, Huiskes R (1988) Primary fit of the Lord cementless total hip. Acta Orthop Scand 59(6):638–642

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt R, Muller L, Kress A et al (2002) A computed tomography assessment of femoral and acetabular bone changes after total hip arthroplasty. Int Orthop 265:299–302

    Google Scholar 

  28. Spotorno L, Schenk RL, Dietschi C et al (1987) Personal experiences with uncemented prostheses. Orthopade 163:225–238

    Google Scholar 

  29. Stukenborg-Colsman C (2007) Femoral neck prostheses. Orthopade 36(4):347–352

    Article  PubMed  CAS  Google Scholar 

  30. Taylor M, Tanner KE, Freeman MAR et al (1995) Cancellous bone stresses sourrounding the femoral component of a hip prosthesis: an elastic-plastic finite element analysis. Med Eng Phys 17(7):544–550

    Article  PubMed  CAS  Google Scholar 

  31. Taylor M, Tanner KE (1997) Topic for debate: fatigue failure of cancellous bone: a possible cause of implant migration and loosening. J Bone Joint Surg [Br] 79-B:181–182

    Google Scholar 

  32. Wilkinson JM, Peel NF, Elson RA et al (2001) Measuring bone mineral density of the pelvis and proximal femur after total hip arthroplasty. J Bone Joint Surg [Br] 83(2):283–288

    Google Scholar 

  33. Wolff J (1892) Das Gesetz von der Transformation des Knochens. Hirschwald, Berlin

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Die Studie wurde von der Firma Waldemar Link GmbH & Co. KG finanziert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.A. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., Gollwitzer, S., Nowak, T. et al. Periprothetische femorale Knochenreaktion nach schenkelhalserhaltender Hüftendoprothetik. Orthopäde 40, 591–599 (2011). https://doi.org/10.1007/s00132-011-1745-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-011-1745-2

Schlüsselwörter

Keywords

Navigation