Skip to main content

Advertisement

Log in

Einführung in die Bisphosphonate

Geschichte und Wirkungsmechanismen

Introduction to bisphosphonates

History and functional mechanisms

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die Entwicklung der Bisphosphonate basierte auf unseren Untersuchungen in den 1960er Jahren zum Mechanismus der Verkalkung. Es erwies sich, dass biologische Flüssigkeiten Hemmkörper der Verkalkung enthielten, die wir dann als anorganisches Pyrophosphat identifizierten.

Pyrophosphat, das schon seit langem (wie auch längere Polyphosphate) als Wasserenthärter gebraucht wurde, um die Kalziumkarbonatbildung zu hemmen, hatte die Eigenschaft auch die Kalziumphosphatkristallbildung und -auflösung zu hemmen. Falls parenteral (aber nicht wenn oral) verabreicht, hemmten sie auch experimentell erzeugte Verkalkungen in vivo beim Tier. Die fehlende Wirkung bei oraler Applikation und auf die Knochenzerstörung wurde auf ihre enzymatische Spaltung im Körper zurückgeführt. Somit suchten wir nach Analogen, die ähnliche Eigenschaften besaßen, aber biologisch nicht abgebaut würden. Die Bisphosphonate, die statt einer P-O-P- eine P-C-P-Gruppe aufweisen, erfüllten diese Kriterien. Auch sie wurden industriell u. a. als Wasserenthärter gebraucht und sind seit der Mitte des 19. Jahrhunderts bekannt. Sie binden sich wie Pyrophosphat an Kalziumphosphatkristallen und hemmen sowohl die Kalziumphosphatbindung und -zerstörung. In vivo hemmen sie die Mineralisation wie auch die Knochenzerstörung.

Während die 1. Wirkung durch einen physikalisch-chemischen Mechanismus erklärt ist, ist die 2. zellulär bedingt – sie besteht in der Hemmung der Bildung, Lebensdauer und Aktivität der Osteoklasten. Der molekulare Mechanismus hängt von der Struktur der Bisphosphonate ab. Die strukturell einfacheren (ohne Stickstoff) inkorporieren die P-C-P-Verbindung in ATP-enthaltende Moleküle und werden für die Osteoklasten toxisch. Die aktiveren, Stickstoff enthaltenden Bisphosphonate hemmen den Mevalonat-Stoffwechsel in Folge einer spezifischen Hemmung von Farnesylpyrophosphatsynthase. Dies führt zur Verminderung von Geranylgeranylpyrophosphat, das für den Osteoklasten lebenswichtig ist.

Abstract

The development of bisphosphonates is based on our studies in the 1960s on the mechanism of mineralization. It was shown that biological fluids contained mineralization inhibitors which we identified as inorganic pyrophosphate.

Pyrophosphate, which, along with longer polyphosphates, has long been known as a water softener due to its inhibition of calcium carbonate formation, also has the ability to inhibit calcium phosphate crystal formation as well as dissolution. When given parenterally (but not orally), they also inhibit experimentally induced mineralization in vivo in animals. Their lack of effectiveness on oral application, as well as for bone destruction, is due to enzymatic cleavage in the body. We therefore sought analogues which had similar properties but were not biologically degraded. The bisphosphonates, which have a P-C-P instead of a P-O-P bond, fulfilled these criteria. Theyhave been known since the middle of the 19th century and have also been used industrially as water softeners. We discovered that they bind to calcium phosphate crystals in the same way as pyrophosphate and inhibit calcium phosphate binding as well as its dissolution. In vivo, they inhibit mineralization as well as bone destruction.

While the first process can be explained by a physicochemical mechanism, the second is cellular and involves the inhibition of the formation, lifespan and activity of osteoclasts. The molecular mechanism is dependent on the structure of the bisphosphonate. The structurally more simple molecules without nitrogen incorporate the P-C-P bond in ATP containing molecules and become toxic to the osteoclasts. The more active nitrogen containing bisphosphonates inhibit mevalonate metabolism due to the specific inhibition of farnesyl pyrophosphate synthase. This leads to a reduction in geranylgeranyl pyrophosphate, which is necessary for osteoclast survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Menschutkin N (1865) Ueber die Einwirkung des Chloracetyls auf phosphorige Säure. Ann Chem Pharm 133: 317–320

    Google Scholar 

  2. Fleisch H, Russell RGG, Bisaz S et al. (1968) The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution of calcium phosphate in vitro and in vivo. Calcif Tissue Res 2(Suppl): 10–10A

    Article  Google Scholar 

  3. Fleisch H, Neuman WF (1961) Mechanism of calcification: role of collagen, polyphosphates and phosphatase. Am J Physiol 200: 1296–1300

    PubMed  Google Scholar 

  4. Fleisch H, Bisaz S (1962) Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 203: 671–675

    PubMed  Google Scholar 

  5. Fleisch H, Bisaz S (1962) Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195: 911

    Article  Google Scholar 

  6. Schibler D, Russell RGG, Fleisch H (1968) Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin Sci 35: 363–372

    PubMed  Google Scholar 

  7. Fleisch H, Russell RGG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212: 901–903

    Article  Google Scholar 

  8. Jung A, Bisaz S, Fleisch H (1973) The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 11: 269–280

    PubMed  Google Scholar 

  9. Russell RGG (1965) Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet II: 462–464

    Google Scholar 

  10. Russell RGG, Bisaz S, Donath A et al. (1971) Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta and other disorders of bone. J Clin Invest 50: 961–969

    PubMed  Google Scholar 

  11. Francis MD, Russell RGG, Fleisch H (1969) Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165: 1264–1266

    Article  PubMed  Google Scholar 

  12. Francis MD (1969) The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calcif Tissue Res 3: 151–162

    Article  PubMed  Google Scholar 

  13. Fleisch H, Russell RGG, Bisaz S et al. (1970) The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Invest 1: 12–18

    PubMed  Google Scholar 

  14. Fleisch H, Russell RGG, Francis MD (1969) Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 165: 1262–1264

    Article  PubMed  Google Scholar 

  15. Russell RGG, Mühlbauer RC, Bisaz S et al. (1970) The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif Tissue Res 6: 183–196

    Article  PubMed  Google Scholar 

  16. Schenk R, Merz WA, Mühlbauer R et al. (1973) Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (Cl2MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif Tissue Res 11: 196–214

    Article  PubMed  Google Scholar 

  17. Trechsel U, Stutzer A, Fleisch H (1987) Hypercalcemia induced with an arotinoid in thyroparathyroidectomized rats. A new model to study bone resorption in vivo. J Clin Invest 80: 1679–1686

    PubMed  Google Scholar 

  18. Mühlbauer RC, Bauss F, Schenk R et al. (1991) BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res 6: 1003–1011

    PubMed  Google Scholar 

  19. Mühlbauer RC, Russell RGG, Williams DA, Fleisch H (1971) The effects of diphosphonates, polyphosphates, and calcitonin on „immobilisation“ osteoporosis in rats. Eur J Clin Invest 1: 336–44

    PubMed  Google Scholar 

  20. Jee WSS, Black HE, Gotcher JE (1981) Effect of dichloromethane diphosphonate on cortisol-induced bone loss in young adult rabbits. Clin Orthop 156: 39–51

    PubMed  Google Scholar 

  21. Schenk R, Eggli P, Fleisch H, Rosini S (1986) Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int 38: 342–349

    PubMed  Google Scholar 

  22. Gasser AB, Morgan DB, Fleisch HA, Richelle LJ (1972) The influence of two diphosphonates on calcium metabolism in the rat. Clin Sci 43: 31–45

    PubMed  Google Scholar 

  23. Jung A, Bornand J, Mermillod B et al. (1984) Inhibition by diphosphonates of bone resorption induced by the Walker tumor of the rat. Cancer Res 44: 3007–3011

    PubMed  Google Scholar 

  24. Martodam RR, Thornton KS, Sica DA et al. (1983) The effects of dichloromethylene diphosphonate on hypercalcemia and other parameters of the humoral hypercalcemia of malignancy in the rat Leydig cell tumor. Calcif Tissue Int 35: 512–519

    Article  PubMed  Google Scholar 

  25. Clézardin P (2002) The antitumor potential of bisphosphonates. Semin Oncol 29(Suppl 21): 33–42

    Google Scholar 

  26. Green JR (2003) Antitumor effects of bisphosphonates. Cancer 97(Suppl): 840–847

    Article  PubMed  Google Scholar 

  27. Fleisch H (2000) Bisphosphonates in bone disease. From the Laboratory to the Patient, 4th edn. Academic Press, San Diego San Francisco

  28. Hughes DE, Wright KR, Uy HL et al. (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10: 1478–1487

    PubMed  Google Scholar 

  29. Sato M, Grasser W, Endo N et al. (1991) Bisphosponate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 88: 2095–2105

    PubMed  Google Scholar 

  30. Guise TA, Mundy GR (1998) Cancer and bone. Endocr Rev 19: 18–54

    Article  PubMed  Google Scholar 

  31. Van der Pluijm G, Vloedgraven H, van Beek E et al. (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98: 698–705

    PubMed  Google Scholar 

  32. Boissier S, Magnetto S, Frappart L et al. (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 57: 3890–3894

    PubMed  Google Scholar 

  33. Shipman CM, Rogers MJ, Apperley JF et al. (1997) Bisphosphonates induce apoptosis in human myeloma cells; a novel anti-tumour activity. Br J Haematol 98: 665–672

    Article  PubMed  Google Scholar 

  34. Luckman SP, Coxon FP, Ebetino FH et al. (1998) Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res 13: 1668–1678

    Article  PubMed  Google Scholar 

  35. Luckman SP, Hughes D, Coxon FP et al. (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13: 581–589

    Article  PubMed  Google Scholar 

  36. Van Beek, E, Pieterman E, Cohen L et al. (1999) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 264: 108–111

    Article  PubMed  Google Scholar 

  37. Bergstrom JD, Bostedor RG, Masarachia PJ et al. (2000) Alendronate is a specific nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 373: 231–241

    Article  PubMed  Google Scholar 

  38. Van Beek E, Lowik C, Van der Pluijm G, Papapoulos S (1999) The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: A clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res 14: 722–729

    Article  PubMed  Google Scholar 

  39. Fisher JE, Rogers MJ, Halasy JM et al. (1999) Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption and kinase activation in vitro. Proc Natl Acad Sci USA 96: 133–138

    Article  PubMed  Google Scholar 

  40. Frith JC, Mönkkönen J, Blackburn GM et al. (1997) Clodronate and liposome-encapsulated clodronate are metabolised to a toxic ATP analog, adenosine5’(b,g-dichloromethylene)triphosphate, by mammalian cells in vitro. J Bone Miner Res 12: 1358–1367

    Article  PubMed  Google Scholar 

  41. Fleisch H, Reszka A, Rodan GA, Rogers M (2002) Bisphosphonates, vol 2: Mechanism of action. In: Bilezikian JP, Raisz LG, Rodan G (eds) Principles of bone biology. Academic Press, San Diego, pp 1361–1385

  42. Adami S, Bhalla AK, Dorizzi R et al. (1987) The acute-phase response after bisphosphonate administration. Calcif Tissue Int 41: 326–331

    PubMed  Google Scholar 

  43. Geho WB, Whiteside JA (1973) Experience with disodium etidronate in diseases of ectopic calcification. In: Frame B, Parfitt AM, Duncan H (eds) Clinical aspects of metabolic bone disease. Excerpta Medica, Amsterdam, pp 506–511

  44. Smith R, Russell RGG, Bishop M (1971) Diphosphonates and Paget’s disease of bone. Lancet I: 945–947

    Article  Google Scholar 

  45. Douglas DL, Duckworth T, Russell RGG et al. (1980) Effect of dichloromethylene diphosphonate in Paget’s disease of bone and in hypercalcaemia due to primary hyperparathyroidism or malignant disease. Lancet I: 1043–1047

    Article  Google Scholar 

  46. Siris ES, Sherman WH, Baquiran DC et al. (1980) Effects of dichloromethylene diphosphonate on skeletal mobilization of calcium in multiple myeloma. N Engl J Med 302: 310–315

    PubMed  Google Scholar 

  47. Reid IR, King AR, Alexander CJ, Ibbertson HK (1988) Prevention of steroid-induced osteoporosis with (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD). Lancet I: 143–146

    Article  Google Scholar 

  48. Watts NB, Harris ST, Genant HK et al. (1990) Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 323: 73–79

    PubMed  Google Scholar 

  49. Black DM, Cummings SR, Karpf DB et al. (1996) Randomized trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348: 1535–1541

    Article  PubMed  Google Scholar 

  50. Glorieux FH, Bishop NJ, Plotkin H et al. (1998) Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 339: 947–952

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fleisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleisch, H. Einführung in die Bisphosphonate. Orthopäde 36, 103–109 (2007). https://doi.org/10.1007/s00132-006-1040-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-006-1040-9

Schlüsselwörter

Keywords

Navigation