Skip to main content

Advertisement

Log in

Präzision in der orthopädischen Computernavigation

Precision in orthopaedic computer navigation

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die Navigation findet vermehrt Zuspruch in der orthopädischen und unfallchirurgischen operativen Versorgung, insbesondere im Bereich der Endoprothetik. Vereinfachungen und die Nutzung bildfreier Navigationsmodule ermöglichen eine deutliche Komfortverbesserung für den Operateur. Die Präzision des Navigationssystems ermöglicht prinzipiell Korrekturen bzw. Implantatausrichtungen innerhalb eines 1°- bzw. 1-mm-Bereichs. Untersuchungen der derzeit genutzten Algorithmen zur Registrierung der mechanischen Beinachse und der Gelenkflächen zeigen reproduzierbare und valide Ergebnisse.

Mithilfe der Navigation gelingt eine exaktere Platzierung von Hüft- und Knieendoprothesen mit einer deutlichen Reduktion der Varianz gegenüber der konventionellen Technik. Ähnliches gilt für die Navigation der tibialen Umstellungsosteotomie, die Korrektur der mechanischen Beinachse wird genauer im Bezug zur präoperativen Planung und reproduzierbarer im Vergleich zur konventionellen Technik. Groß angelegte prospektive Studien im Vergleich zur konventionellen Technik liegen bisher nur für die Knie-TEP-Navigation vor. Ob tatsächlich mithilfe der verbesserten Prothesenplatzierung längere Standzeiten resultieren, werden die nächsten Jahre zeigen. Prospektiv randomisierte Studien sind hier prinzipiell für alle navigierten Operationen und Techniken notwendig.

Abstract

Navigation has become increasingly integrated into orthopaedic surgery, especially in the area of endoprosthetic procedures. Simplification of the instrumentation along with the use of imageless systems has increased the ease of use for the orthopaedic surgeon. Principle navigation systems enable an accuracy of corrections and alignments within intervals of 1 mm or 1°. Consequently, potential intra- and interobserver failures during the registration procedure typically range within a few millimetres or degrees. Analysis of the actual algorithms used for the registration process of the lower extremity mechanical axis and the articular surfaces reveal valid and reproducible results.

With the help of navigation, it is possible to achieve a higher degree of precision in total hip and knee implant placement, including a distinct reduction in variance as compared to conventional techniques. Similarly, application of navigation during a high tibial osteotomy or at the osteotomy of the distal radius also enables a more precise correction of the axis of the affected extremity, in addition to improved reproducibility. Despite these promising early results, large prospective clinical studies comparing conventional techniques versus computer assisted navigation are thus far only available for total knee arthroplasty. Whether navigated prosthesis placement can truly extend the longevity of an implant will require continued observation in the years to come. In addition, further prospective studies are required to determine the benefit of navigation in other orthopaedic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5a,b
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Amin DV, Kanade T, DiGioia AM 3rd, Jaramaz B (2003) Ultrasound registration of the bone surface for surgical navigation. Comput Aided Surg 8(1): 1–16

    PubMed  Google Scholar 

  2. Athwal GS, Ellis RE, Small CF, Pichora DR (2003) Computer-assisted distal radius osteotomy. J Hand Surg Am 28(6): 951–958

    Article  PubMed  Google Scholar 

  3. Bathis H, Perlick L, Tingart M et al. (2004) CT-free computer-assisted total knee arthroplasty versus the conventional technique: radiographic results of 100 cases. Orthopedics 27(5): 476–480

    PubMed  Google Scholar 

  4. Bathis H, Perlick L, Tingart M et al. (2004) Radiological results of image-based and non-image-based computer-assisted total knee arthroplasty. Int Orthop 28(2): 87–90

    Article  PubMed  Google Scholar 

  5. Citak M, Kendoff D, Look V et al. (2006) Biomechnic stability of navigation reference arrays. Comput Aided Surg (eingereicht)

  6. DiGioia AM 3rd, Blendea S, Jaramaz B, Levison TJ (2004) Less invasive total hip arthroplasty using navigational tools. Instr Course Lect 53: 157–164

    PubMed  Google Scholar 

  7. DiGioia AM 3rd, Plakseychuk AY, Levison TJ, Jaramaz B (2003) Mini-incision technique for total hip arthroplasty with navigation. J Arthroplasty 18(2): 123–128

    Article  PubMed  Google Scholar 

  8. Fleute M, Lavallee S, Julliard R (1999) Incorporating a statistically based shape model into a system for computer-assisted anterior cruciate ligament surgery. Med Image Anal 3(3): 209–222

    Article  PubMed  Google Scholar 

  9. Hankemeier S, Hufner T, Wang G et al. (2005) Navigated intraoperative analysis of lower limb alignment. Arch Orthop Trauma Surg 125(8): 531–535

    Article  PubMed  Google Scholar 

  10. Hofstetter R, Slomczykowski M, Krettek C et al. (2000) Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction. Comput Aided Surg 5(5): 311–325

    Article  PubMed  Google Scholar 

  11. Honl M, Schwieger K, Gauck CH et al. (2005) Comparison of total hip replacements cup orientation and position using different navigation systems and the conventional manual technique. Orthopade 34(11): 1131–1136

    Article  PubMed  Google Scholar 

  12. Hüfner T (2001) Computer Assistierte Beckenchirurgie. Präzisionsanalysen, Innovationen und klinische Anwendungen. Habilitationsschrift 1, Unfallchirurgische Klinik, Medizinische Hochschule Hannover

  13. Hüfner T, Gebhard F, Grutzner PA et al. (2004) Which navigation when? Injury 35(Suppl 1): 30–34

    Article  Google Scholar 

  14. Hüfner T, Geerling J, Kfuri M Jr et al. (2003) Computer assisted pelvic surgery: registration based on a modified external fixator. Comput Aided Surg 8(4): 192–197

    PubMed  Google Scholar 

  15. Hüfner T, Kfuri M Jr, Kendoff D et al. (2003) Navigated osteosynthesis of the proximal femur. An experimental study. Unfallchirurg 106(11): 975–979

    PubMed  Google Scholar 

  16. Jenny JY, Boeri C, Picard F, Leitner F (2004) Reproducibility of intra-operative measurement of the mechanical axes of the lower limb during total knee replacement with a non-image-based navigation system. Comput Aided Surg 9(4): 161–165

    Article  PubMed  Google Scholar 

  17. Jolles BM, Genoud P, Hoffmeyer P (2004) Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement. Clin Orthop Relat Res 426: 174–179

    Article  PubMed  Google Scholar 

  18. Kalteis T, Beckmann J, Herold T et al. (2004) Accuracy of an image-free cup navigation system – an anatomical study. Biomed Tech (Berl) 49(9): 257–262

    Google Scholar 

  19. Kalteis T, Handel M, Herold T et al. (2005) Greater accuracy in positioning of the acetabular cup by using an image-free navigation system. Int Orthop 29(5): 272–276

    Article  PubMed  Google Scholar 

  20. Kendoff D, Geerling J, Mahlke L et al. (2003) Navigated Iso-C(3D)-based drilling of a osteochondral lesion of the talus. Unfallchirurg 106(11): 963–967

    PubMed  Google Scholar 

  21. Keppler P, Gebhard F, Grutzner PA et al. (2004) Computer aided high tibial open wedge osteotomy. Injury 35(Suppl 1): 68–78

    Article  PubMed  Google Scholar 

  22. Khadem R, Yeh CC, Sadeghi-Tehrani M et al. (2000) Comparative tracking error analysis of five different optical tracking systems. Comput Aided Surg 5(2): 98–107

    Article  PubMed  Google Scholar 

  23. Kinzl L, Gebhard F, Keppler P (2004) Total knee arthroplasty – navigation as the standard. Chirurg 75(10): 976–981

    Article  PubMed  Google Scholar 

  24. Kotsianos D, Rock C, Wirth S et al. (2002) Detection of tibial condylar fractures using 3D imaging with a mobile image amplifier (Siemens ISO-C-3D): Comparison with plain films and spiral CT. Rofo 174(1): 82–87

    Article  PubMed  Google Scholar 

  25. Kowal J, Amstutz CA, Caversaccio M, Nolte LP (2003) On the development and comparative evaluation of an ultrasound B-mode probe calibration method. Comput Aided Surg 8(3): 107–119

    PubMed  Google Scholar 

  26. Krettek C, Miclau T, Grun O et al. (1998) Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury 29(Suppl 3): 29–39

    Article  PubMed  Google Scholar 

  27. Li Q, Zamorano L, Jiang Z et al. (1999) Effect of optical digitizer selection on the application accuracy of a surgical localization system-a quantitative comparison between the OPTOTRAK and flashpoint tracking systems. Comput Aided Surg 4(6): 314–321

    Article  PubMed  Google Scholar 

  28. Liverneaux P (2005) Scaphoid percutaneous osteosynthesis by screw using computer assisted surgery: an experimental study. Chir Main 24(3–4): 169–173

    Google Scholar 

  29. Luring C, Hufner T, Kendoff D et al. (2006) Eversion or subluxation of patella in soft tissue balancing of total knee arthroplasty? Results of a cadaver experiment. Knee 13(1): 15–18

    Article  PubMed  Google Scholar 

  30. Luring C, Hufner T, Kendoff D et al. (2005) What is the influence of the approach to intraoperative measurement of the knee joint on total knee arthroplasty? A navigation-controlled study on a cadaver knee. Unfallchirurg 108(4): 274–278

    Article  PubMed  Google Scholar 

  31. Maciunas RJ, Galloway RL Jr, Latimer JW (1994) The application accuracy of stereotactic frames. Neurosurgery 35(4): 682–694

    Google Scholar 

  32. Marin F, Mannel H, Claes L, Durselen L (2003) Accurate determination of a joint rotation center based on the minimal amplitude point method. Comput Aided Surg 8(1): 30–34

    PubMed  Google Scholar 

  33. Martin A, von Strempel A (2005) CT-based and CT-free navigation in total knee arthroplasty – a prospective comparative study with respects to clinical and radiological results. Z Orthop Ihre Grenzgeb 143(3): 323–328

    Article  PubMed  Google Scholar 

  34. Nabeyama R, Matsuda S, Miura H et al. (2004) The accuracy of image-guided knee replacement based on computed tomography. J Bone Joint Surg Br 86(3): 366–371

    Article  PubMed  Google Scholar 

  35. Nogler M, Kessler O, Prassl A et al. (2004) Reduced variability of acetabular cup positioning with use of an imageless navigation system. Clin Orthop Relat Res 426: 159–163

    Article  PubMed  Google Scholar 

  36. Perlick L, Bathis H, Perlick C et al. (2005) Revision total knee arthroplasty: a comparison of postoperative leg alignment after computer-assisted implantation versus the conventional technique. Knee Surg Sports Traumatol Arthrosc 13(3): 167–173

    Article  PubMed  Google Scholar 

  37. Perlick L, Bathis H, Tingart M et al. (2004) Minimally invasive unicompartmental knee replacement with a nonimage-based navigation system. Int Orthop 28(4): 193–197

    Article  PubMed  Google Scholar 

  38. Richolt JA, Effenberger H, Rittmeister ME (2005) How does soft tissue distribution affect anteversion accuracy of the palpation procedure in image-free acetabular cup navigation? An ultrasonographic assessment. Comput Aided Surg 10(2): 87–92

    Article  PubMed  Google Scholar 

  39. Sagbo S, Blochaou F, Langlotz F et al. (2005) New orthopaedic implant management tool for computer-assisted planning, navigation, and simulation: From implant CAD files to a standardized XML-based implant database. Comput Aided Surg 10(5): 311–319

    Article  PubMed  Google Scholar 

  40. Saragaglia D, Roberts J (2005) Navigated osteotomies around the knee in 170 patients with osteoarthritis secondary to genu varum. Orthopedics 28(10 Suppl): 1269–1274

    Google Scholar 

  41. Schwarz ML, Pott PP, Beck A et al. (2005) Test bed for assessment of the kinematical determination of navigation systems for total knee arthroplasty. Does a limited range of motion of the hip joint influence the accuracy of the determination? Comput Aided Surg 10(1): 51–57

    Article  PubMed  Google Scholar 

  42. Sculco TP (2003) Is smaller necessarily better? Am J Orthop 32(4): 169

    PubMed  Google Scholar 

  43. Sculco TP, Jordan LC (2004) The mini-incision approach to total hip arthroplasty. Instr Course Lect 53: 141–147

    PubMed  Google Scholar 

  44. Siston RA, Daub AC, Giori NJ et al. (2005) Evaluation of methods that locate the center of the ankle for computer-assisted total knee arthroplasty. Clin Orthop Relat Res 439: 129–135

    Article  PubMed  Google Scholar 

  45. Siston RA, Delp SL (2006) Evaluation of a new algorithm to determine the hip joint center. J Biomech 39(1): 125–130

    Article  PubMed  Google Scholar 

  46. Slomczykowski MA, Hofstetter R, Sati M et al. (2001) Novel computer-assisted fluoroscopy system for intraoperative guidance: feasibility study for distal locking of femoral nails. J Orthop Trauma 15(2): 122–131

    Article  PubMed  Google Scholar 

  47. Sparmann M, Wolke B, Czupalla H et al. (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 85(6): 830–835

    PubMed  Google Scholar 

  48. Stockle U, Konig B, Dahne M et al. (2002) Computer assisted pelvic and acetabular surgery. Clinical experiences and indications. Unfallchirurg 105(10): 886–892

    Article  PubMed  Google Scholar 

  49. Wang G, Zheng G, Gruetzner PA et al. (2005) A fluoroscopy-based surgical navigation system for high tibial osteotomy. Technol Health Care 13(6): 469–483

    PubMed  Google Scholar 

  50. Wang G, Zheng G, Keppler P et al. (2005) Implementation, accuracy evaluation, and preliminary clinical trial of a CT-free navigation system for high tibial opening wedge osteotomy. Comput Aided Surg 10(2): 73–86

    Article  PubMed  Google Scholar 

  51. Wentzensen A, Zheng G, Vock B et al. (2003) Image-based hip navigation. Int Orthop 27(Suppl 1): 43–46

    Google Scholar 

  52. Widmer KH, Grutzner PA (2004) Joint replacement-total hip replacement with CT-based navigation. Injury 35(Suppl 1): 84–89

    Article  Google Scholar 

  53. Wixson RL, MacDonald MA (2005) Total hip arthroplasty through a minimal posterior approach using imageless computer-assisted hip navigation. J Arthroplasty 20(7 Suppl 3): 51–56

    Article  Google Scholar 

  54. Zimmermann R, Gabl M, Arora R, Rieger M (2003) Computer-assisted planning and corrective osteotomy in distal radius malunion. Handchir Mikrochir Plast Chir 35(5): 333–337

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hüfner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüfner, T., Kendoff, D., Citak, M. et al. Präzision in der orthopädischen Computernavigation. Orthopäde 35, 1043–1055 (2006). https://doi.org/10.1007/s00132-006-0995-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-006-0995-x

Schlüsselwörter

Keywords

Navigation