Skip to main content
Log in

Dezidierte Knorpelbildgebung zur Detektion von Knorpelverletzungen und osteochondralen Läsionen

Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Osteochondrale Läsionen stellen einen Hauptrisikofaktor für die Entwicklung einer Arthrose am Sprunggelenk dar.

Ziel

Es sollen ein Überblick über therapierelevante klinische Bildgebungsverfahren zur Knorpelbildgebung an Fuß und Sprunggelenk gegeben und typische osteochondrale Verletzungen demonstriert werden.

Material und Methoden

Eine intensive Literaturrecherche wurde durchgeführt und mit persönlicher Erfahrung unterstrichen.

Ergebnisse

Die Knorpelbildgebung zur Detektion osteochondraler Läsionen an Fuß und Sprunggelenk bleibt eine Herausforderung. Dennoch können dezidierte morphologische und quantitative magnetresonanztomographische (MR-)Bildgebungsmethoden klinisch wichtige Informationen zur Verfügung stellen, die hilfreich bei Therapieentscheidungen z. B. hinsichtlich einer knorpelchirurgischen Maßnahme sind. Die Sensitivität der MR-Arthrographie (MR-A) und computertomographischen Arthrographie (CT-A) ist der nativen Magnetresonanztomographie (MRT) bezüglich der Detektion osteochondraler Läsionen überlegen. Im Bereich der kleineren Gelenke des Fußes werden vor allem fortgeschrittene degenerative Veränderungen mittels konventioneller Röntgendiagnostik detektiert; nur in ausgewählten Fällen spielt die MR- und CT-Diagnostik dieser kleineren Gelenken eine Rolle.

Diskussion

Während die dezidierte Knorpelbildgebung mit CT und MRT im Bereich der kleinen Fußgelenke eine geringere Rolle spielt, wird sie im Bereich des Sprunggelenks aufgrund der verfügbaren therapeutischen Optionen wie verschiedenen knorpelchirurgischen Verfahren immer wichtiger für die klinische Diagnostik.

Abstract

Background

Osteochondral defects represent a main risk factor for osteoarthritis of the ankle.

Objectives

The aim of this article is to provide an overview of current optimal clinical cartilage imaging techniques of the foot and ankle and to show typical osteochondral injuries on imaging.

Materials and methods

A thorough literature search was performed and was supported by personal experience.

Results

Cartilage imaging of the foot and ankle remains challenging. However, advanced morphological and quantitative magnetic resonance (MR) imaging techniques may provide useful clinical information, for example, concerning cartilage repair surgery. Compared to MRI, MR arthrography (MR-A) and CT arthrography (CT-A) have higher sensitivity with respect to detection of osteochondral defects. Regarding smaller joints of the foot, mainly advanced osteoarthritic changes are detected on conventional radiography; only in rare cases, MR and CT imaging of these smaller joints is of relevance.

Conclusions

While at the smaller joints of the foot cartilage imaging only plays a minor role, at the ankle joint cross-sectional cartilage imaging using CT and MRI becomes more and more important for clinicians due to emerging therapeutic options, such as different osteochondral repair techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bosien WR, Staples OS, Russell SW (1955) Residual disability following acute ankle sprains. J Bone Joint Surg Am 37-A(6):1237–1243

    Article  CAS  PubMed  Google Scholar 

  2. Huch K, Kuettner KE, Dieppe P (1997) Osteoarthritis in ankle and knee joints. Semin Arthritis Rheum 26(4):667–674

    Article  CAS  PubMed  Google Scholar 

  3. Johnson VL, Giuffre BM, Hunter DJ (2012) Osteoarthritis: what does imaging tell us about its etiology? Semin Musculoskelet Radiol 16(5):410–418

    Article  PubMed  Google Scholar 

  4. Egloff C, Hugle T, Valderrabano V (2012) Biomechanics and pathomechanisms of osteoarthritis. Swiss Med Wkly 142:w13583

    PubMed  Google Scholar 

  5. Stufkens SA, Knupp M, Horisberger M, Lampert C, Hintermann B (2010) Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study. J Bone Joint Surg Am 92(2):279–286

    Article  PubMed  Google Scholar 

  6. O’Loughlin PF, Heyworth BE, Kennedy JG (2010) Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 38(2):392–404

    Article  PubMed  Google Scholar 

  7. Grambart ST (2016) Arthroscopic management of osteochondral lesions of the talus. Clin Podiatr Med Surg 33(4):521–530

    Article  PubMed  Google Scholar 

  8. Millington SA, Li B, Tang J et al (2007) Quantitative and topographical evaluation of ankle articular cartilage using high resolution MRI. J Orthop Res 25(2):143–151

    Article  PubMed  Google Scholar 

  9. Kirschke JS, Braun S, Baum T et al (2016) Diagnostic value of CT arthrography for evaluation of osteochondral lesions at the ankle. Biomed Res Int. https://doi.org/10.1155/2016/3594253

    PubMed  PubMed Central  Google Scholar 

  10. Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F (2009) Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 37(Suppl 1):112S–118S

    Article  PubMed  Google Scholar 

  11. Jungmann PM, Baum T, Schaeffeler C et al (2015) 3.0 T MR imaging of the ankle: axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study. Eur J Radiol 84(8):1546–1554

    Article  PubMed  Google Scholar 

  12. Baer TE, Stolley MP, Thedens DR, Brown TD, Saltzman CL (2006) Clinical tip: development of an ankle distraction device compatible with MRI and radiography. Foot Ankle Int 27(6):472–474

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wirth W, Hunter DJ, Nevitt MC et al (2017) Predictive and concurrent validity of cartilage thickness change as a marker of knee osteoarthritis progression: data from the Osteoarthritis Initiative. Osteoarthr Cartil 25(12):2063–2071

    Article  CAS  PubMed  Google Scholar 

  14. Weber MA, Wünnemann F, Jungmann PM, Kuni B, Rehnitz C (2017) Modern cartilage imaging of the ankle. Fortschr Röntgenstr 189(10):945–956

    Article  Google Scholar 

  15. Reilingh ML, Beimers L, Tuijthof GJ, Stufkens SA, Maas M, van Dijk CN (2010) Measuring hindfoot alignment radiographically: the long axial view is more reliable than the hindfoot alignment view. Skeletal Radiol 39(11):1103–1108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hopper MA, Robinson P (2008) Ankle impingement syndromes. Radiol Clin North Am 46(6):957–971

    Article  PubMed  Google Scholar 

  17. Kalichman L, Hernandez-Molina G (2014) Midfoot and forefoot osteoarthritis. Foot (Edinb) 24(3):128–134

    Article  Google Scholar 

  18. Halstead J, Bergin D, Keenan AM, Madden J, McGonagle D (2010) Ligament and bone pathologic abnormalities more frequent in neuropathic joint disease in comparison with degenerative arthritis of the foot and ankle: implications for understanding rapidly progressive joint degeneration. Arthritis Rheum 62(8):2353–2358

    Article  PubMed  Google Scholar 

  19. Dietrich TJ, da Silva FL, de Abreu MR, Klammer G, Pfirrmann CW (2015) First metatarsophalangeal joint-MRI findings in asymptomatic volunteers. Eur Radiol 25(4):970–979

    Article  PubMed  Google Scholar 

  20. Orr JD, Sabesan V, Major N, Nunley J (2010) Painful bone marrow edema syndrome of the foot and ankle. Foot Ankle Int 31(11):949–953

    Article  PubMed  Google Scholar 

  21. Woertler K, Rummeny EJ, Settles M (2005) A fast high-resolution multislice T1-weighted turbo spin-echo (TSE) sequence with a DRIVen equilibrium (DRIVE) pulse for native arthrographic contrast. AJR Am J Roentgenol 185(6):1468–1470

    Article  PubMed  Google Scholar 

  22. Jungmann PM, Agten CA, Pfirrmann CW, Sutter R (2017) Advances in MRI around metal. J Magn Reson Imaging 46(4):972–991

    Article  PubMed  Google Scholar 

  23. Duc SR, Pfirrmann CW, Schmid MR et al (2007) Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology 245(1):216–223

    Article  PubMed  Google Scholar 

  24. Notohamiprodjo M, Kuschel B, Horng A et al (2012) 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 47(4):231–239

    Article  PubMed  Google Scholar 

  25. Stevens KJ, Busse RF, Han E et al (2008) Ankle: isotropic MR imaging with 3D-FSE-cube—initial experience in healthy volunteers. Radiology 249(3):1026–1033

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ristow O, Steinbach L, Sabo G et al (2009) Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee—image quality and diagnostic performance. Eur Radiol 19(5):1263–1272

    Article  PubMed  Google Scholar 

  27. Barr C, Bauer JS, Malfair D et al (2007) MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 17(6):1518–1528

    Article  PubMed  Google Scholar 

  28. Chhabra A, Soldatos T, Chalian M, Carrino JA, Schon L (2012) Current concepts review: 3 T magnetic resonance imaging of the ankle and foot. Foot Ankle Int 33(2):164–171

    Article  PubMed  Google Scholar 

  29. Juras V, Welsch G, Bar P, Kronnerwetter C, Fujita H, Trattnig S (2012) Comparison of 3 T and 7 T MRI clinical sequences for ankle imaging. Eur J Radiol 81(8):1846–1850

    Article  PubMed  Google Scholar 

  30. Nebelung S, Rath B, Tingart M, Kuhl C, Schrading S (2017) Chondral and osteochondral defects : representation by imaging methods. Orthopäde 46(11):894–906

    Article  CAS  PubMed  Google Scholar 

  31. Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M (2003) Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol 32(5):259–265

    Article  CAS  PubMed  Google Scholar 

  32. Theumann NH, Pfirrmann CW, Mohana Borges AV, Trudell DJ, Resnick D (2002) Metatarsophalangeal joint of the great toe: normal MR, MR arthrographic, and MR bursographic findings in cadavers. J Comput Assist Tomogr 26(5):829–838

    Article  PubMed  Google Scholar 

  33. Aurich M, Albrecht D, Angele P et al (2017) Treatment of osteochondral lesions in the ankle: a guideline from the group “clinical tissue regeneration” of the German Society of Orthopaedics and Traumatology (DGOU). Z Orthop Unfall 155(1):92–99

    CAS  PubMed  Google Scholar 

  34. Masala S, Fiori R, Bartolucci DA et al (2010) Diagnostic and therapeutic joint injections. Semin Intervent Radiol 27(2):160–171

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vollman AT, Craig JG, Hulen R, Ahmed A, Zervos MJ, van Holsbeeck M (2013) Review of three magnetic resonance arthrography related infections. World J Radiol 5(2):41–44

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lepage-Saucier M, Linda DD, Chang EY et al (2013) MRI of the metatarsophalangeal joints: improved assessment with toe traction and MR arthrography. AJR Am J Roentgenol 200(4):868–871

    Article  PubMed  Google Scholar 

  37. Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19(7):781–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 391(Suppl):S26–S33

    Article  Google Scholar 

  39. Burstein D, Gray M, Mosher T, Dardzinski B (2009) Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am 47(4):675–686

    Article  PubMed  Google Scholar 

  40. Jungmann PM, Baum T, Bauer JS et al (2014) Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? Biomed Res Int. https://doi.org/10.1155/2014/840170

    PubMed  PubMed Central  Google Scholar 

  41. Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 214(1):259–266

    Article  CAS  PubMed  Google Scholar 

  42. Liebl H, Joseph G, Nevitt MC et al (2015) Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis 74(7):1353–1359

    Article  PubMed  Google Scholar 

  43. Jungmann PM, Kraus MS, Nardo L et al (2013) T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative. J Magn Reson Imaging 38(6):1415–1424

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 36(5):665–673

    Article  CAS  PubMed  Google Scholar 

  45. Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE (2008) Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 58(6):1727–1730

    Article  PubMed  Google Scholar 

  46. Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R (2003) In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology 229(1):269–274

    Article  PubMed  Google Scholar 

  47. van Tiel J, Kotek G, Reijman M et al (2016) Is T1rho mapping an alternative to delayed gadolinium-enhanced MR imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology 279(2):523–531

    Article  PubMed  Google Scholar 

  48. Forschner PF, Beitzel K, Imhoff AB et al (2017) Five-year outcomes after treatment for acute instability of the tibiofibular syndesmosis using a suture-button fixation system. Orthop J Sports Med 5(4):2325967117702854

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schreiner MM, Mlynarik V, Zbyn S et al (2017) New technology in imaging cartilage of the ankle. Cartilage 8(1):31–41

    Article  PubMed  Google Scholar 

  50. Van Ginckel A, De Mits S, Bennell KL, Bryant AL, Witvrouw EE (2016) T2* mapping of subtalar cartilage: precision and association between anatomical variants and cartilage composition. J Orthop Res 34(11):1969–1976

    Article  PubMed  Google Scholar 

  51. Domayer SE, Apprich S, Stelzeneder D et al (2012) Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation. Osteoarthr Cartil 20(8):829–836

    Article  CAS  PubMed  Google Scholar 

  52. Zbyn S, Brix MO, Juras V et al (2015) Sodium magnetic resonance imaging of ankle joint in cadaver specimens, volunteers, and patients after different cartilage repair techniques at 7 T: initial results. Invest Radiol 50(4):246–254

    Article  PubMed  PubMed Central  Google Scholar 

  53. Trattnig S, Welsch GH, Juras V et al (2010) 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257(1):175–184

    Article  PubMed  Google Scholar 

  54. Al-Ali D, Graichen H, Faber S, Englmeier KH, Reiser M, Eckstein F (2002) Quantitative cartilage imaging of the human hind foot: precision and inter-subject variability. J Orthop Res 20(2):249–256

    Article  PubMed  Google Scholar 

  55. Forney M, Subhas N, Donley B, Winalski CS (2011) MR imaging of the articular cartilage of the knee and ankle. Magn Reson Imaging Clin N Am 19(2):379–405

    Article  PubMed  Google Scholar 

  56. Parisien JS (1986) Arthroscopic treatment of osteochondral lesions of the talus. Am J Sports Med 14(3):211–217

    Article  CAS  PubMed  Google Scholar 

  57. Winalski CS, Gupta KB (2003) Magnetic resonance imaging of focal articular cartilage lesions. Top Magn Reson Imaging 14(2):131–144

    Article  PubMed  Google Scholar 

  58. Sugimoto K, Takakura Y, Okahashi K, Samoto N, Kawate K, Iwai M (2009) Chondral injuries of the ankle with recurrent lateral instability: an arthroscopic study. J Bone Joint Surg Am 91(1):99–106

    Article  PubMed  Google Scholar 

  59. Kannus P, Renstrom P (1991) Treatment for acute tears of the lateral ligaments of the ankle. Operation, cast, or early controlled mobilization. J Bone Joint Surg Am 73(2):305–312

    Article  CAS  PubMed  Google Scholar 

  60. Kuettner KE, Cole AA (2005) Cartilage degeneration in different human joints. Osteoarthr Cartil 13(2):93–103

    Article  CAS  PubMed  Google Scholar 

  61. Aurich M, Mwale F, Reiner A et al (2006) Collagen and proteoglycan turnover in focally damaged human ankle cartilage: evidence for a generalized response and active matrix remodeling across the entire joint surface. Arthritis Rheum 54(1):244–252

    Article  CAS  PubMed  Google Scholar 

  62. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463

    Article  CAS  PubMed  Google Scholar 

  63. von Stillfried E, Weber MA (2014) Aseptic osteonecrosis in children and adolescents. Orthopäde 43(8):750–757

    Article  Google Scholar 

  64. Bock P, Kristen KH, Kroner A, Engel A (2004) Hallux valgus and cartilage degeneration in the first metatarsophalangeal joint. J Bone Joint Surg Br 86(5):669–673

    Article  CAS  PubMed  Google Scholar 

  65. Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Jt Surg Am 41-A:988–1020

    Article  CAS  Google Scholar 

  66. Dipaola JD, Nelson DW, Colville MR (1991) Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy 7(1):101–104

    Article  CAS  PubMed  Google Scholar 

  67. ICRS Cartilage Injury Evaluation Package 2000. International Cartilage Repair Society (ICRS). http://cartilage.org/content/uploads/2014/10/ICRS_evaluation1-1.pdf. Zugegriffen: 04.10.2016

  68. Jungmann PM, Welsch GH, Brittberg M et al (2017) Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage 8(3):272–282

    Article  PubMed  Google Scholar 

  69. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1):16–23

    Article  PubMed  Google Scholar 

  70. Jungmann PM, Brucker PU, Baum T et al (2015) Bilateral cartilage T2 mapping 9 years after Mega-OATS implantation at the knee: a quantitative 3 T MRI study. Osteoarthr Cartil 23(12):2119–2128

    Article  CAS  PubMed  Google Scholar 

  71. Niemeyer P, Albrecht D, Andereya S et al (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23(3):426–435

    Article  CAS  PubMed  Google Scholar 

  72. Niethammer TR, Valentin S, Gulecyuz MF et al (2015) Bone marrow edema in the knee and its influence on clinical outcome after matrix-based autologous chondrocyte implantation: results after 3‑year follow-up. Am J Sports Med 43(5):1172–1179

    Article  PubMed  Google Scholar 

  73. de Windt TS, Welsch GH, Brittberg M et al (2013) Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am J Sports Med 41(7):1695–1702

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Jungmann.

Ethics declarations

Interessenkonflikt

A.S. Gersing, B.J. Schwaiger, K. Wörtler und P.M. Jungmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gersing, A.S., Schwaiger, B.J., Wörtler, K. et al. Dezidierte Knorpelbildgebung zur Detektion von Knorpelverletzungen und osteochondralen Läsionen. Radiologe 58, 422–432 (2018). https://doi.org/10.1007/s00117-017-0348-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-017-0348-2

Schlüsselwörter

Keywords

Navigation