Skip to main content
Log in

Dosisreduktion und adäquate Bildqualität in der digitalen Radiographie: ein Widerspruch?

Dose reduction and adequate image quality in digital radiography: a contradiction?

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Dosisreduktion und adäquate Bildqualität in der digitalen Radiographie – ein Widerspruch?

Radiologische Standardverfahren

Die Verfahren der digitalen Radiographie haben die herkömmlichen Film-Folien-Systeme nahezu vollständig ersetzt.

Methodische Innovationen

Steigende Dosiseffizienz und verbesserte Ortsauflösung sind die wichtigsten Kenngrößen der rasanten Weiterentwicklung digitaler Detektorsysteme.

Leistungsfähigkeit

Bei Nadelkristalldetektoren wurde eine Dosisreduktion bis zu 50% gegenüber Film-Folien-Systemen gefunden. Weiter besteht ein Dosiseinsparungspotenzial von bis zu 50% im Vergleich von Direktradiographie(DR)- mit Computed-radiography(CR)-Systemen bei Thoraxaufnahmen. Trotz der aktuellen Fortschritte bei CR-Systemen ist die Dosiseffizienz von DR-Detektoren (Cäsiumjodidflachbilddetektor) noch deutlich höher.

Bewertung

Die Fortschritte in der Detektortechnologie haben wesentlich zur Dosisreduktion und zu verbesserter Bildqualität einerseits und zu Zeitersparnis und damit höherer Untersuchungsfrequenz andererseits beigetragen.

Empfehlung für die Praxis

Der Einsatz von Dosisindikatoren und eine longitudinale Dosiskontrolle sind wichtig zur Vermeidung eines unbemerkten Dosisanstiegs bei fehlender optischer Kontrolle. Die von der EU vorgegebenen diagnostischen Referenzwerte sollten deutlich unterschritten werden. Regelmäßige Qualitätskontrollen sowie laufende Schulungen des ärztlichen und medizinisch-technischen Personals helfen bei der Sicherstellung der Anwendung des ALARA-Prinzips („as low as reasonably achievable“).

Abstract

Clinical/methodical issue

Dose reduction and adequate image quality in digital radiography – a contradiction?

Standard radiological methods

Digital radiography has already replaced traditional screen-film systems.

Methodical innovations

Substantial improvements in both dose efficiency and spatial resolution demonstrate the rapid developments in digital radiography.

Performance

Needle-detector systems have shown up to a 50% dose reduction compared to traditional screen-film systems. There is also a dose reduction capability of up to 50% comparing direct radiography (DR) systems to computed radiography (CR) systems for chest X-rays. However, despite the most recent achievements of CR technology, the dose efficiency of DR systems (caesium iodide flat-panel detector) is unparalleled.

Achievements

The progress in detector technology has contributed to dose reduction and improved image quality, while saving time and providing a higher examination rate.

Practical recommendations

The use of dose indicators and longitudinal dose control are important to avoid substantial accidental dose increase. The dose applied to patients should fall markedly below the defined diagnostic reference levels within the European Union. Regular quality control, as well as continuous education and training of medical and technical personnel, contribute to ensure that the ALARA (as low as reasonably achievable) principle is consistently followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. International Commission on Radiological Protection (1992) 1990 Recommendation of the International Commission on Radiological Protection – users‘ edition. ICRP Publication 60. Pergamon Press, Oxford. ISBN 0-08-041998-041994

  2. EURATOM (1997) Council directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure. Off J Eur Commun (L 180):122–127

    Google Scholar 

  3. Bacher K, Smeets P, Bonnarens K et al (2003) Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR 181:923–929

    PubMed  Google Scholar 

  4. Berger-Kulemann V, Pötter-Lang S, Gruber M et al (2011) Needle image plates compared to conventional CR in chest radiography: Is dose reduction possible? Eur J Radiol [Epub ahead of print]

  5. Brix G, Veit R, Häusler U (2010) Radiation hygiene in medical X-ray imaging. Part 2: Assessment of radiation exposure and radiation protection measures. Radiologe 50:913–927

    Article  PubMed  CAS  Google Scholar 

  6. Busch HP, Faulkner K (2005) Image quality and dose management in digital radiography: a new paradigm for optimisation. Radiat Prot Dosimetry 117:32–37

    Google Scholar 

  7. DeBoo DW, Weber M, Deurloo EE (2011) Computed radiography versus mobile direct radiography for bedside chest radiographs: impact of dose on image quality and reader agreement. Clin Radiol 66(9):826–832

    Article  CAS  Google Scholar 

  8. Fasbender R, Schaetzing R (2003) New computed radiography technologies in digital radiography. Radiologe 43:367–373

    Article  PubMed  CAS  Google Scholar 

  9. Freudenberg LS, Beyer TH (2011) Subjective perception of radiation risk. J Nucl Med 52:29–35

    Article  Google Scholar 

  10. Gruber M, Uffmann M, Weber M et al (2005) Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography. Eur Radiol 16:1544–1550

    Article  Google Scholar 

  11. Gruber M, Weber M, Homolka P et al (2011) Feasibility of dose reduction using needle-structured image plates versus powder-structured plates for computed radiography of the knee. AJR 197:318–323

    Article  Google Scholar 

  12. Hamer OW, Sirlin CB, Strotzer M et al (2005) Chest radiography with a flat-panel detector: image quality with dose reduction after copper filtration. Radiology 237:691–700

    Article  PubMed  Google Scholar 

  13. Huda W (2005) The current concept of speed should not be used to describe digital imaging systems. Radiology 234:345–346

    Article  PubMed  Google Scholar 

  14. Körner M, Wirth S, Treitl M et al (2005) Initial clinical results with a new needle screen storage phoshor system in chest radiograms. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 177:1491–1496

    Article  PubMed  Google Scholar 

  15. Körner M, Weber CH, Wirth S et al (2007) Advances in digital radiography: physical principles and system overview. RadioGraphics 27:675–686

    Article  PubMed  Google Scholar 

  16. Lehnert TH, Naguib NN, Korkusuz H et al (2011) Image-quality perception as a function of dose in digital radiography. AJR 197:1399–1403

    Article  PubMed  Google Scholar 

  17. Li F, Engelmann R, Pesce LL et al (2011) Small lung cancers: improved detection by use of bone suppression imaging – comparison with dual-energy subtraction chest radiography. Radiology 261(3):937–949

    Article  PubMed  Google Scholar 

  18. Loose R, Wucherer M (2007) Occupational exposure to radiation. Radiologe 47:27–40

    Article  Google Scholar 

  19. Machida H, Yuhara T, Mori T et al (2010) Optimizing parameters for flat-panel detector digital tomosynthesis. RadioGraphics 30:549–562

    Article  PubMed  Google Scholar 

  20. Morrison G, John SD, Goske MJ et al (2011) Pediatric digital radiography education for radiologic technologists: current state. Pediatr Radiol 41:602–610

    Article  PubMed  Google Scholar 

  21. Oba Y, Zaza T (2010) Abandoning daily routine chest radiography in the intensive care unit: meta-analysis. Radiology 255:386–395

    Article  PubMed  Google Scholar 

  22. Prokop M, Neitzel U, Schaefer-Prokop C (2003) Principles of image processing in digital chest radiography. J Thoracic Imaging 18(3):148–164

    Article  Google Scholar 

  23. Samei E, Dobbins JT III, Lo JY, Tornai MP (2005) A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosimetry 114:220–229

    Article  PubMed  Google Scholar 

  24. Schätzl M, Braunschweig R, Hoppe T et al (2005) Comments on the standards for acceptance and consistency testing of systems for digital radiography. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 177:1297–1304

    Article  PubMed  Google Scholar 

  25. Seibert JA (2004) Tradeoffs between image quality and dose. Pediatr Radiol 34(Suppl 3):183–195 (discussion 234–241)

    Article  Google Scholar 

  26. Seibert JA, Morin RL (2011) The standardized exposure index for digital radiography: an opportunity for optimization of radiation dose to the pediatric population. Pediatr Radiol 41:573–581

    Article  PubMed  Google Scholar 

  27. Siegel MD, Rubinowitz AN (2009) Routine vs on-demand chest radiographs in intensive care. Lancet 374:1656–1658

    Article  PubMed  Google Scholar 

  28. Uffmann M, Neitzel U, Prokop M et al (2005) Flat-panel-detector chest radiography: effect of tube voltage on image quality. Radiology 235:642–650

    Article  PubMed  Google Scholar 

  29. Uffmann M, Schaefer-Prokop C, Neitzel U (2008) Balance of required dose and image quality in digital radiography. Radiologe 48:249–257

    Article  PubMed  CAS  Google Scholar 

  30. Uffmann M, Schaefer-Prokop C (2009) Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol 72:202–208

    Article  PubMed  Google Scholar 

  31. Vano E, Fenandez Soto JM (2007) Patient dose management in digital radiography. Biomed Imaging Interv J 3(2):e26

    Article  PubMed  CAS  Google Scholar 

  32. Vano E, Fernandez JM, Ten JI (2007) Transition from screen-film to digital radiography: evolution of patient radiation doses at projection radiography. Radiology 243(2):461–466

    Article  PubMed  Google Scholar 

  33. Veit R, Guggenberger R, Noßke D, Brix G (2010) Diagnostic reference levels for X-ray examinations. Update 2010. Radiologe 50:907–912

    Article  PubMed  CAS  Google Scholar 

  34. Veldkamp WJH, Kroft LJM, Geleijns J (2009) Dose and perceived image quality in chest radiography. Eur J Radiol 72:209–217

    Article  PubMed  Google Scholar 

  35. Völk M, Hamer OW, Feuerbach S, Strotzer M (2004) Dose reduction in skeletal and chest radiography using a large-area flat-panel detector based on amorphous silicon and thallium-doped cesium iodide: technical background, basic image quality parameters, and review oft the literature. Eur Radiol 14:827–834

    Article  PubMed  Google Scholar 

  36. Weatherburn GC, Bryan S, Davies JG (2000) Comparison of doses for bedside examinations of the chest with conventional screen-film and computed radiography: results of a randomized controlled trial. Radiology 217:707–712

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Wir danken Herrn Dr. Uwe Wolff, Medizinphysiker in der Universitätsklinik für Strahlentherapie AKH/MUW Wien, für die freundliche Unterstützung bei der Erstellung der Thoraxröntgenaufnahmen am Phantom.

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pötter-Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pötter-Lang, S., Dünkelmeyer, M. & Uffmann, M. Dosisreduktion und adäquate Bildqualität in der digitalen Radiographie: ein Widerspruch?. Radiologe 52, 898–904 (2012). https://doi.org/10.1007/s00117-012-2337-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-012-2337-9

Schlüsselwörter

Keywords

Navigation