Skip to main content
Log in

MRT der Lungenperfusion

Technische Voraussetzungen und diagnostischer Stellenwert

Magnetic resonance imaging of pulmonary perfusion

Technical requirements and diagnostic impact

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Mit der Verfügbarkeit leistungsfähiger Gradientensysteme und schneller k-Raum-Akquisitionstechniken wie der parallelen Bildgebung konnten verschiedene Studien die Machbarkeit der Lungenperfusionsbildgebung in der MRT zeigen. In der Praxis haben sich dynamische kontrastverstärkte 3D-Gradientenechosequenzen, wie sie für zeitaufgelöste MR-Angiographien verwendet werden, für die Bildgebung der Lungenperfusion etabliert. Hiermit ist es möglich, die Perfusion der gesamten Lunge mit ausreichend hoher zeitlicher und räumlicher Auflösung zu visualisieren. In mehren klinischen Studien konnte bei Patienten mit Lungenembolie, pulmonaler Hypertonie sowie Erkrankungen der Atemwege und des Lungenparenchyms der klinische Nutzen der Lungenperfusions-MRT und die gute Übereinstimmung mit der Lungenperfusionsszintigraphie nachgewiesen werden. Der folgende Übersichtsartikel beschreibt die technische Durchführung, Bildnachverarbeitung und die klinischen Anwendungsgebiete der MRT zur Untersuchung der Lungenperfusion.

Abstract

With technical improvements in gradient hardware and the implementation of innovative k-space sampling techniques, such as parallel imaging, the feasibility of pulmonary perfusion MRI could be demonstrated in several studies. Dynamic contrast-enhanced 3D gradient echo sequences as used for time-resolved MR angiography have been established as the preferred pulse sequences for lung perfusion MRI. With these techniques perfusion of the entire lung can be visualized with a sufficiently high temporal and spatial resolution. In several trials in patients with acute pulmonary embolism, pulmonary hypertension and airway diseases, the clinical benefit and good correlation with perfusion scintigraphy have been demonstrated. The following review article describes the technical prerequisites, current post-processing techniques and the clinical indications for MR pulmonary perfusion imaging using MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Amundsen T, Kvaerness J, Jones RA et al (1997) Pulmonary embolism: detection with MR perfusion imaging of lung – a feasibility study. Radiology 203:181–185

    PubMed  CAS  Google Scholar 

  2. Amundsen T, Torheim G, Kvistad KA et al (2002) Perfusion abnormalities in pulmonary embolism studied with perfusion MRI and ventilation-perfusion scintigraphy: an intra-modality and inter-modality agreement study. J Magn Reson Imaging 15:386–394

    Article  PubMed  Google Scholar 

  3. Amundsen T, Torheim G, Waage A et al (2000) Perfusion magnetic resonance imaging of the lung: characterization of pneumonia and chronic obstructive pulmonary disease. A feasibility study. J Magn Reson Imaging 12:224–231

    Article  PubMed  CAS  Google Scholar 

  4. Attenberger U, Ingrisch M, Dietrich O et al (2009) Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3T. Invest Radiol, accepted

  5. Bergofsky EH, Bass BG, Ferretti R, Fishman AP (1963) Pulmonary vasoconstriction in response to precapillary hypoxemia. J Clin Invest 42:1201–1215

    Article  PubMed  CAS  Google Scholar 

  6. Bock M, Schoenberg SO, Floemer F, Schad LR (2000) Separation of arteries and veins in 3D MR angiography using correlation analysis. Magn Reson Med 43:481–487

    Article  PubMed  CAS  Google Scholar 

  7. Eichinger M, Puderbach M, Fink C et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis – initial results. Eur Radiol 16:2147–2152

    Article  PubMed  Google Scholar 

  8. Ersoy H, Goldhaber SZ, Cai T et al (2007) Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. AJR Am J Roentgenol 188:1246–1254

    Article  PubMed  Google Scholar 

  9. Fazio F, Wollmer P (1981) Clinical ventilation-perfusion scintigraphy. Clin Physiol 1:323–337

    Article  PubMed  CAS  Google Scholar 

  10. Fink C, Bock M, Kiessling F et al (2004) Time-resolved contrast-enhanced three-dimensional pulmonary MR angiography: 1.0 M gadobutrol vs. 0.5 M gadopentetate dimeglumine. J Magn Reson Imaging 19:202–208

    Article  PubMed  Google Scholar 

  11. Fink C, Bock M, Puderbach M et al (2003) Partially parallel three-dimensional magnetic resonance imaging for the assessment of lung perfusion – initial results. Invest Radiol 38:482–488

    Article  PubMed  Google Scholar 

  12. Fink C, Goyen M, Lotz J (2007) Magnetic resonance angiography with blood-pool contrast agents: future applications. Eur Radiol 17 [suppl 2]:B38–B44

    Google Scholar 

  13. Fink C, Ley S, Kroeker R et al (2005) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Invest Radiol 40:40–48

    Article  PubMed  Google Scholar 

  14. Fink C, Ley S, Puderbach M et al (2004) 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent. Eur Radiol 14:1291–1296

    Article  PubMed  Google Scholar 

  15. Fink C, Puderbach M, Bock M et al (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    Article  PubMed  Google Scholar 

  16. Fink C, Puderbach M, Ley S et al (2004) Contrast-enhanced three-dimensional pulmonary perfusion magnetic resonance imaging: intraindividual comparison of 1.0 M gadobutrol and 0.5 M Gd-DTPA at three dose levels. Invest Radiol 39:143–148

    Article  PubMed  Google Scholar 

  17. Fink C, Puderbach M, Ley S et al (2005) Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences. Eur Radiol 15:2070–2074

    Article  PubMed  CAS  Google Scholar 

  18. Fink C, Risse F, Buhmann R et al (2004) Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI – initial results. Rofo 176:170–174

    PubMed  CAS  Google Scholar 

  19. Fink C, Schmaehl A, Bock M et al (2003) Images in cardiovascular medicine. Pulmonary vein stenosis after radiofrequency ablation for atrial fibrillation: image findings with multiphasic pulmonary magnetic resonance angiography. Circulation 107:e129–e130

    Article  PubMed  Google Scholar 

  20. Gerstenfeld EPJJ, Bazan V, Lazar S et al (2007) Comparison of high power, medium power, and irrigated-tip ablation strategies for pulmonary vein isolation in a canine model. J Cardiovasc Electrophysiol 18:849–853

    Article  PubMed  Google Scholar 

  21. Hatabu H, Gaa J, Kim D et al (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36:503–508

    Article  PubMed  CAS  Google Scholar 

  22. Iwasawa T, Saito K, Ogawa N et al (2002) Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J Magn Reson Imaging 15:685–692

    Article  PubMed  Google Scholar 

  23. Kauczor HU, Kreitner KF (1999) MRI of the pulmonary parenchyma. Eur Radiol 9:1755–1764

    Article  PubMed  CAS  Google Scholar 

  24. Keilholz SD, Mai VM, Berr SS et al (2002) Comparison of first-pass Gd-DOTA and FAIRER MR perfusion imaging in a rabbit model of pulmonary embolism. J Magn Reson Imaging 16:168–171

    Article  PubMed  Google Scholar 

  25. Kluge A, Dill T, Ekinci O et al (2004) Decreased pulmonary perfusion in pulmonary vein stenosis after radiofrequency ablation: assessment with dynamic magnetic resonance perfusion imaging. Chest 126:428–437

    Article  PubMed  Google Scholar 

  26. Kluge A, Gerriets T, Lange U, Bachman G (2005) MRI for short-term follow-up of acute pulmonary embolism. Assessment of thrombus appearance and pulmonary perfusion: a feasibility study. Eur Radiol 15:1969–1977

    Article  PubMed  Google Scholar 

  27. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    Article  PubMed  CAS  Google Scholar 

  28. Lehnhardt S, Thorsten Winterer J, Strecker R et al (2002) Assessment of pulmonary perfusion with ultrafast projection magnetic resonance angiography in comparison with lung perfusion scintigraphy in patients with malignant stenosis. Invest Radiol 37:594–599

    Article  PubMed  Google Scholar 

  29. Levin DL, Chen Q, Zhang M et al (2001) Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 46:166–171

    Article  PubMed  CAS  Google Scholar 

  30. Ley-Zaporozhan J, Ley S, Eberhardt R et al (2007) Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema. Eur J Radiol 63:76–83

    Article  PubMed  Google Scholar 

  31. Ley S, Fink C, Zaporozhan J et al (2005) Value of high spatial and high temporal resolution magnetic resonance angiography for differentiation between idiopathic and thromboembolic pulmonary hypertension: initial results. Eur Radiol 15:2256–2263

    Article  PubMed  Google Scholar 

  32. Ley S, Mereles D, Risse F et al (2007) Quantitative 3D pulmonary MR-perfusion in patients with pulmonary arterial hypertension: correlation with invasive pressure measurements. Eur J Radiol 61:251–255

    Article  PubMed  Google Scholar 

  33. Lim RP, Shapiro M, Wang EY et al (2008) 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced bolus-chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol 29:1847–1854

    Article  PubMed  CAS  Google Scholar 

  34. Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487

    Article  PubMed  CAS  Google Scholar 

  35. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  36. Murase K, Shinohara M, Yamazaki Y (2001) Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 46:3147–3159

    Article  PubMed  CAS  Google Scholar 

  37. Nael K, Michaely HJ, Kramer U et al (2006) Pulmonary circulation: contrast-enhanced 3.0 T MR angiography – initial results. Radiology 240:858–868

    Article  PubMed  Google Scholar 

  38. Nakagawa T, Sakuma H, Murashima S et al (2001) Pulmonary ventilation-perfusion MR imaging in clinical patients. J Magn Reson Imaging 14:419–424

    Article  PubMed  CAS  Google Scholar 

  39. Nikolaou K, Schoenberg SO, Attenberger U et al (2005) Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography – preliminary experience. Radiology 236:694–703

    Article  PubMed  Google Scholar 

  40. Nikolaou K, Schoenberg SO, Brix G et al (2004) Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Invest Radiol 39:537–545

    Article  PubMed  Google Scholar 

  41. Ohno Y, Hatabu H, Higashino T et al (2004) Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. AJR Am J Roentgenol 182:73–78

    PubMed  Google Scholar 

  42. Ohno Y, Hatabu H, Murase K et al (2004) Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging 20:353–365

    Article  PubMed  Google Scholar 

  43. Ohno Y, Hatabu H, Murase K et al (2007) Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. AJR Am J Roentgenol 188:48–56

    Article  PubMed  Google Scholar 

  44. Ohno Y, Higashino T, Takenaka D et al (2004) MR angiography with sensitivity encoding (SENSE) for suspected pulmonary embolism: comparison with MDCT and ventilation-perfusion scintigraphy. AJR Am J Roentgenol 183:91–98

    PubMed  Google Scholar 

  45. Ohno Y, Koyama H, Nogami M et al (2008) Dynamic perfusion MRI: capability for evaluation of disease severity and progression of pulmonary arterial hypertension in patients with connective tissue disease. J Magn Reson Imaging 28:887–899

    Article  PubMed  Google Scholar 

  46. Puderbach M, Hintze C, Ley S et al (2007) MR imaging of the chest: a practical approach at 1.5T. Eur J Radiol 64:345–355

    Article  PubMed  CAS  Google Scholar 

  47. Puderbach M, Risse F, Biederer J et al (2008) In vivo Gd-DTPA concentration for MR lung perfusion measurements: assessment with computed tomography in a porcine model. Eur Radiol 18:2102–2107

    Article  PubMed  Google Scholar 

  48. Reinartz P, Nowak B, Weiss C, Buell U (2004) Acute pulmonary embolism: thin-collimation spiral CT versus planar ventilation-perfusion scintigraphy. Radiology 232:621; author reply 621–622

    Article  PubMed  Google Scholar 

  49. Risse F, Semmler W, Kauczor HU, Fink C (2006) Dual-bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 24:1284–1290

    Article  PubMed  Google Scholar 

  50. Schoenberg SO, Knopp MV, Grau A et al (1998) Ultraschnelle MR-Venographie der Lungen. Radiologe 38:597–605

    Article  PubMed  CAS  Google Scholar 

  51. Schuster DP, Kaplan JD, Gauvain K et al (1995) Measurement of regional pulmonary blood flow with PET. J Nucl Med 36:371–377

    PubMed  CAS  Google Scholar 

  52. Sourbron S, Luypaert R, Morhard D et al (2007) Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys Med Biol 52:6761–6778

    Article  PubMed  CAS  Google Scholar 

  53. Strecker R, Scheffler K, Klisch J et al (2000) Fast functional MRA using time-resolved projection MR angiography with correlation analysis. Magn Reson Med 43:303–309

    Article  PubMed  CAS  Google Scholar 

  54. Van Rugge FP, Boreel JJ, van der Wall EE et al (1991) Cardiac first-pass and myocardial perfusion in normal subjects assessed by sub-second Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:959–965

    Article  Google Scholar 

  55. Fink C, Risse F, Semmler W et al (2006) MRI of pulmonary perfusion. Radiologe 46(4):290–299

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U.I. Attenberger.

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft (DFG), FI 836/6-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attenberger, U., Ingrisch, M., Büsing, K. et al. MRT der Lungenperfusion. Radiologe 49, 739–747 (2009). https://doi.org/10.1007/s00117-009-1880-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1880-5

Schlüsselwörter

Keywords

Navigation