Skip to main content
Log in

Funktionelle Anatomie und Biomechanik des Karpus

Functional anatomy and biomechanics of the carpus

  • Handwurzel und Finger
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Handwurzel ist ein komplexes Mosaik von Skelettelementen mit einer Vielzahl von Gelenken und einem differenzierten Ligamentsystem. Die gegensätzlichen Anforderungen aus hoher Belastungsstabilität und hoher Bewegungsfreiheit werden durch folgende Funktionsprinzipien realisiert:

  • Die proximale Handwurzelreihe ist ein mobiles Glied, das zwischen die fixen Elemente des Unterarms und der distalen Reihe interponiert ist. Mit „variabler Geometrie“ passt die proximale Reihe ihre Form entsprechend den aktuellen Raum- und Krafterfordernissen an.

  • Am Handgelenk kommt es zu kombinierten Bewegungen in 2 Raumebenen, wobei die Radialduktion mit einer Flexion und die Ulnarduktion mit einer Extension kombiniert sind.

  • In der Kombination mit den Umwendbewegungen im distalen Radioulnargelenk sowie den karpalen Abduktions- und Flexions-/Extensionsbewegungen kann die Hand multiplanar auf einer kugelförmigen Oberfläche bewegt werden.

  • Die karpale Funktion lässt sich funktionell am besten mit dem „Modell eines unter Spannung stehenden Ringsystems“ erklären.

Die Übersichtsarbeit skizziert die Anatomie und Biomechanik der Handwurzel und stellt die systematische Bildanalyse unter Verwendung von Hilfslinien, karpalen Winkeln und Längenindizes vor.

Abstract

The wrist is an exceedingly complex structure composed of several joints and a dedicated ligamentous system. Its functional principles allow a wide range of carpal motion and make the wrist remarkably resistant to external stress forces:

  • The proximal carpal row serves as an intercalated link interposed between the static elements of both the forearm and the distal carpal row. Like a flexible placeholder, the proximal row synchronously adapts to the spatial and temporal requirements of the wrist.

  • There are synergistic movement patterns including simultaneous flexion of the proximal row as the wrist is deviated radially and simultaneous extension during ulnar deviation.

  • Together with pronosupination of the radioulnar joints, the combined radial/ulnar inclination and flexion/extension enable spherical, out-of-plane movements of the hand.

  • Carpal function is best explained by the “model of a ring under tension.”

This review addresses the anatomy and the biomechanics of the wrist and illustrates systematic image analysis by using carpal lines and angles as well as indices of carpal height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9a, b
Abb. 10a–d
Abb. 11
Abb. 12a–c
Abb. 13a–d

Literatur

  1. Anatomy and Biomechanics Committee of the IFSSH (1999) Position Statement: definition of carpal instability. J Hand Surg 24A: 866–867

    Google Scholar 

  2. Baratz ME, Larsen CF (1996) Wrist and hand measurements and classification schemas. In: Gilula LA, Yin Y (eds) Imaging of the wrist and hand. Saunders, Philadelphia, pp 225–259

  3. Berger RA (1996) The gross and histologic anatomy of the scapholunate interosseous ligament. J Hand Surg 21A: 170–178

    Google Scholar 

  4. Berger RA, Kauer JMG, Landsmeer (1991) Radioscapholunate ligament: a gross anatomic and histologic study of the fetal and adult wrist. J Hand Surg 16A: 350–355

    Google Scholar 

  5. Berger RA, Imeada T, Bergland L, An KN (1999) Constraint and material properties of the subregions of the scapholunate interosseous ligament. J Hand Surg 24A: 953–962

    Google Scholar 

  6. Buckwalter JA, Einhorn TA, Bolander ME (1996) Healing of musculoskeletal tissues. In: Rockwood CA, Green DP, Bucholz RW (eds) Fractures in adults, 4th edn. Lippincott-Raven, Philadelphia, p 261

  7. DiBenedetto MR, Lubbers LM, Roff ME (1990) Qualification of error in measurement of radial inclination angle and radiocarpal distance. J Hand Surg 16A: 399–400

    Google Scholar 

  8. Dobyns JH, Linscheid RL (2004) A fifty-year overview of wrist instability. In: Berger RA, Weiss AP (eds). Hand surgery, vol 1. Lippincott, Williams & Wilkins, Philadephia, pp 461–479

  9. Drewniany JJ, Palmer AK, Flatt AE (1982) The scaphotrapezial ligament complex: an anatomic and biomechanical study. J Hand Surg 10A: 492–498

    Google Scholar 

  10. Feipel V, Rooze M (1999) The capsular ligaments of the wrist: morphology, morphometry and clinical applications. Surg Radiol Anat 21: 175–180

    PubMed  Google Scholar 

  11. Garcia-Elias M (1997) Kinetic analysis of carpal stability during grip. Hand Clin 13: 151–158

    PubMed  Google Scholar 

  12. Geissler WB, Freeland AE, Savoie FH et al. (1996) Intracarpal soft tissue lesions associated with an intra-articular fracture of the distal end of the radius. J Bone Joint Surg 78-A: 357–365

    Google Scholar 

  13. Gilford WW, Bolton RH, Lambrinudi C (1943) The mechanism of the wrist joint with special reference to fractures of the scaphoid. Guy’s Hosp Rep 92: 52–59

    Google Scholar 

  14. Gilula LA (1979) Carpal injuries: analytic approach and case exercises. Am J Roentgenol 133: 503–517

    Google Scholar 

  15. Haims AH, Schweitzer ME, Morrison WB et al. (2003) Internal derangement of the wrist: indirect MR arthrography versus unenhanced MR imaging. Radiology 227: 701–707

    PubMed  Google Scholar 

  16. Hara T, Horii E, An KN et al. (1992) Force distribution across wrist joint: application of pressure-sensitive conductive rubber. J Hand Surg 17A: 339–347

    Google Scholar 

  17. Hardy DC, Totty WG, Reinus WR, Gilula LA (1987) Posteroanterior wrist radiography: importance of arm positioning. J Hand Surg 12A: 504–508

    Google Scholar 

  18. Horii E, Garcia-Elias M, An KN et al. (1991) A kinematic study of lunotriquetral dissociations. J Hand Surg 16A: 355–362

    Google Scholar 

  19. Kapandji IA (1986) Biomechanik des Carpus und des Handgelenks. Orthopäde 15: 60–73

  20. Kauer JMG, de Lange A (1987) The carpal joint. Hand Clin 3: 23–29

    PubMed  Google Scholar 

  21. Kobayashi M, Berger RA, Nagy L et al. (1997) Normal kinematics of carpal bones: a three-dimensional analysis of carpal bone motion relative to the radius. J Biomech 30: 787–793

    Article  PubMed  Google Scholar 

  22. Koebke J (1988) Anatomie des Handgelenkes und der Handwurzel. Unfallchirurgie 14: 74–79

    PubMed  Google Scholar 

  23. Kristensen SS, Thomassen E, Christensen F (1986) Ulnar variance determination. J Hand Surg 11B: 255–257

    Google Scholar 

  24. Larsen CF, Mathiesen FK, Lindequist S (1991) Measurements of carpal bone angles on lateral wrist radiographs. J Hand Surg 16A: 888–693

    Google Scholar 

  25. Levinsohn EM, Palmer AK (1983) Arthrography of the traumatized wrist. Correlation radiography and carpal instability series. Radiology 146: 647–651

    PubMed  Google Scholar 

  26. Lichtman DM, Schneider JR, Swafford AR, Mack GR (1981) Ulnar midcarpal instability – clinical and laboratory analysis. J Hand Surg 6A: 515–523

    Google Scholar 

  27. Linkous MD, Pierce SD, Gilula LA (2000) Scapholunate ligamentous communicating defects in symptomatic and asymptomatic wrists: characteristics. Radiology 216: 846–850

    PubMed  Google Scholar 

  28. Linscheid RL (1986) Kinematic considerations of the wrist. Clin Orthop 202: 27–39

    PubMed  Google Scholar 

  29. Linscheid RL, Dobyns JH, Beabout JW, Bryan RS (1972) Traumatic instability of the wrist: diagnosis, classification and pathomechanics. J Bone Joint Surg 54 A: 1612–1632

    Google Scholar 

  30. Mayfield JK, Johnson RP, Kilcoyne RF (1976) The ligaments of the human wrist and their functional significance. Anat Rec 186: 417–428

    Article  PubMed  Google Scholar 

  31. Mitsuyasu H, Patterson RM, Shah MA et al. (2004) The role of the dorsal intercarpal ligament in dynamic and static scapholunate instability. J Hand Surg 29A: 279–288

    Google Scholar 

  32. Palmer AK, Werner FW (1984) Biomechanics of the distal radioulnar joint. Clin Orthop 187: 26–35

    PubMed  Google Scholar 

  33. Protas JM, Jackson WT (1980) Evaluating carpal instabilities with fluoroscopy. Am J Roentgenol 135: 137–140

    Google Scholar 

  34. Rayhack JM, Linscheid RL, Dobyns JH, Smith JH (1987) Posttraumatic ulnar translation of the carpus. J Hand Surg 12A: 180–189

    Google Scholar 

  35. Ruby LK, Cooney WP III, An KN et al. (1988) Relative motion of selected carpal bones: a kinematic analysis of the normal wrist. J Hand Surg 13A: 1–10

    Google Scholar 

  36. Scheck RJ, Kubitzek C, Hierner R et al. (1997) The scapholunate interosseous ligament in MR arthrography of the wrist: correlation with non-enhanced MRI and wrist arthroscopy. Skeletal Radiol 26: 263–271

    Article  PubMed  Google Scholar 

  37. Schmid MR, Schertler T, Pfirrmann CW et al. (2005) Interosseous ligament tears of the wrist: comparison of multi-detector row CT arthrography and MR imaging. Radiology 237: 1008–1013

    PubMed  Google Scholar 

  38. Schmidt HM, Lanz U (2003) Chirurgische Anatomie der Hand, 2. Aufl. Thieme, Stuttgart, S 44–79

  39. Schmitt R, Christopoulos G, Meier R et al. (2003) Direkte MR-Arthrographie des Handgelenks in Zwei-Kompartiment-Technik: Prospektive Studie an 125 Patienten im Vergleich zur Arthroskopie. Fortschr Röntgenstr 175: 911–919

    Google Scholar 

  40. Schuind FA, Linscheid RL, An KN, Chao EY (1992) A normal data base of posteroanterior roentgenographic measurements of the wrist. J Bone Joint Surg 74-A: 1418–1429

    Google Scholar 

  41. Short WH, Werner FW, Green JK, Masaoka S (2002) Biomechanical evaluation of ligamentous stabilizers of the scaphoid and lunate. J Hand Surg 27A: 991–1002

    Google Scholar 

  42. Smith DK (1994) Scapholunate interosseous ligament of the wrist: MR appearances in asymptomatic volunteers and arthrographically normal wrists. Radiology 192: 217–221

    PubMed  Google Scholar 

  43. Sokolow C, Saffar P (2001) Anatomy and histology of the scapholunate ligament. Hand Clin 17: 77–81

    PubMed  Google Scholar 

  44. Stäbler A, Kohz P, Baumeister RGH, Reiser M (1995) Diagnosis of injuries of the carpal ligaments and capsules using contrast-enhanced MRI. Radiologe 35 [Suppl]: 90

  45. Taleisnik J (1976) The ligaments of the wrist. J Hand Surg 1: 110–118

    Google Scholar 

  46. Taleisnik J (1985) The wrist. Churchill Livingstone, Edinburgh

  47. Theumann N, Favarger N, Schnyder P, Meuli R (2001) Wrist ligament injuries: value of post-arthrography computed tomography. Skeletal Radiol 30: 88–93

    Article  PubMed  Google Scholar 

  48. Totterman SM, Miller R, Wasserman B et al. (1993) Intrinsic and extrinsic carpal ligaments: evaluation by three-dimensional Fourier transforms MR imaging. Am J Roentgenol 160: 117–123

    Google Scholar 

  49. Truong N, Mann FA, Gilula LA, Kang SW (1994) Tailored wrist instability series. Radiology 192: 481–484

    PubMed  Google Scholar 

  50. Vahlensieck M, Peterfy CG, Wischer T et al. (1996) Indirect MR arthrography: optimization and clinical applications. Radiology 200: 249–254

    PubMed  Google Scholar 

  51. Viegas SF, Patterson RM, Hokanson JA, Davis J (1993) Wrist anatomy: incidence, distribution and correlation of anatomic variations, tears and arthrosis. J Hand Surg 18A: 463–475

    Google Scholar 

  52. Viegas SF, Patterson RM, Todd PD, McCarty P (1993) Load mechanics of the midcarpal joint. J Hand Surg 18A: 14–18

    Google Scholar 

  53. Viegas SF, Yamaguchi S, Boyd NL, Patterson RM (1999) The dorsal ligaments of the wrist: anatomy, mechanical proprieties, and function. J Hand Surg 24A: 456–468

    Google Scholar 

  54. Weber ER (1984) Concepts govering the rotational shift of the intercalated segment of the carpus. Orthop Clin North Am 15: 193–207

    PubMed  Google Scholar 

  55. Wolfe SW, Veu CP, Crisco JJ III (2000) In vivo scaphoid, lunate and capitate kinematics in wrist flexion and extension. J Hand Surg 25A: 860–869

    Google Scholar 

  56. Yang Z, Mann FA, Gilula LA et al. (1997) Scaphopisocapitate alignment: criterion to establish a neutral lateral view of the wrist. Radiology 205: 865–869

    PubMed  Google Scholar 

  57. Youm Y, McMurthy RY, Flatt AE, Gillespie TE (1978) Kinematics of the wrist. I. An experimental study of radial-ulnar deviation and flexion-extension. J Bone Joint Surg 60-A: 423–431

    Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, R. Funktionelle Anatomie und Biomechanik des Karpus. Radiologe 46, 638–648 (2006). https://doi.org/10.1007/s00117-006-1397-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-006-1397-0

Schlüsselwörter

Keywords

Navigation